

MSL Coordinate Systems for Science Instruments

Last updated: 3 March 2013

Primary Contributions from Justin Maki ¹
Minor inputs from the Remote Sensing Mast
Functional Design Description by Noah Warner¹

¹Jet Propulsion Laboratory, California Institute of Technology

Primary Rover Operations Coordinate Frames

Frame Name	Description	Origin Type	Direction Type	Location of Origin	+X Direction	+Y Direction	+Z Direction	Typical use case
SITE	Site Frame	Mars fixed	Mars fixed	Frame origin is attached to Mars, sits on the nominal Martian surface. New sites are declared by a command sent by the Rover Planners, typically at the end of a drive, usually associated with an accompanying Navcam 360-degree panorama.	North	East	Nadir	Targeted remote sensing (XYZ), target designation, driving. This is the most commonly used frame in operations.
RNAV	Rover Navigation Frame	Rover fixed	Rover fixed	Frame origin is fixed relative to the rover, located at the nominal Martian surface, centered under the rover turn-in-place rotation axis.	Forward drive direction	Starboard direction	Down (chassis nadir)	Pointing cameras to fixed locations relative to the rover body (usually used in special cases only).
L	Mars Local Level Frame	Rover fixed	Mars fixed	Frame origin is fixed relative to the rover, located at the nominal Martian surface, centered under the rover turn-in-place rotation axis.	North	East	Nadir	Untargeted remote sensing (az/el), for example, drive direction imaging, general terrain imaging, cases where accurate XYZ position is unknown

Definition of the RNAV Frame

- The RNAV origin is located on the nominal (flat) surface of Mars, beneath the rover, centered on the turn-in-place axis of rotation.
 - When the rover turns in place, the RNAV origin stays fixed
- The $+Z_{RNAV}$ axis points downward (relative to the rover chassis) and is perpendicular to the X_{RNAV}/Y_{RNAV} plane.
- The +X_{RNAV} axis points in the forward drive direction.
- The +Y_{RNAV} axis points towards the starboard side of the rover (i.e, to the right when facing forward).

 The RNAV coordinate system is righthanded, orthogonal, and defined by axes X_{RNAV} Y_{RNAV}, and Z_{RNAV} (shown in red, below).

Definition of the RNAV Frame (cont.)

RNAV Frame Side View

RNAV Frame Front View

Definition of Mars Local Level Frame

- The Mars Local Level Coordinate Frame (LL Frame) is right handed, orthogonal, and defined by axes X_{11} , Y_{11} , and Z_{11} (shown in blue, below).
- It is a North (X₁₁) East (Y₁₁) Nadir (Z₁₁) frame.
- When a site frame is declared, the LL frame origin is coincident with the RNAV frame.
- The frame origin is attached to the rover, but the directions of the axis are Mars fixed.
 - Can be thought of as a compass

 $+Z_{RNAV}$ = chassis nadir (fixed to rover body, downward if on flat ground)

Definition of Site Frame

A site frame is a LL frame that is attached to the Martian surface whenever the site index is incremented (shown in green, below).

Site to Site Translations

Given two site frames, S_N and S_{N+1} , the rover position expressed in site N coordinates is given by:

Multiple Site Frames

- As the rover drives across the Martian surface, it accumulates errors in its position with respect to the local site frame origin.
- When these accumulated errors become large enough (or whenever it is convenient), the rover drivers declare a new site frame by executing a command onboard the rover.
- When a new site frame is declared, the rover position becomes (0,0,0) in the current site frame.
- Often a new site will be declared when acquiring a Navcam 360-degree panorama.

Cartesian (XYZ) versus Angles (az/el)

There are 2 common methods of pointing the cameras within the RNAV and Local Level/Site:

- Cartesian 3-D points (X,Y,Z)
 - Referenced from the coordinate frame origin
- Azimuth and Elevation Angles
 - Referenced from +X axis (azimuth) and X/Y plane (elevation)

Coordinate Type: XYZ

Site Frame (LL) XYZ:

- +X is North
- +Y is East
- -X is South
- -Y is West
- +Z is down
- -Z is up

RNAV XYZ:

- +X is Forward
- +Y is to the right (when facing forward)
- -X is Rearward
- -Y is to the left (when facing forward)
- +Z is down
- -Z is up

Azimuth/Elevation Angle Definitions

^{*}Note: The RSM can only point down to approximately -85 degrees in the RNAV frame.

Note: When using az/el pointing, the boresights are positioned so that they are *parallel* to the corresponding coordinate frame vectors. For example, an LL elevation angle of 0 places the boresight parallel to the LL X/Y plane.

Other coordinate types

In addition to XYZ and AZ/EL absolute pointing, there are other options available:

- AZ/EL RELATIVE pointing can move the camera boresights relative to their current position
 - Example: If the camera is pointed North, a relative azimuth move of +90 degrees will point the camera to the East.
- JOINT Frame pointing (absolute and relative) allows pointing of the cameras using Remote Sensing Mast (RSM) joint angles (measured relative to the RSM joint hardstops)
 - Only used in special circumstances.

Other Rover Operations Coordinate Frames

Frame					
Туре	FRAME	Description			
	WHEEL_LF	Left front wheel			
	WHEEL_RF	Right front wheel			
	WHEEL_LM	Left middle wheel			
Mobility	WHEEL_RM	Right middle wheel			
	WHEEL_LR	Left rear wheel			
	WHEEL_RR	Right rear wheel			
	NAV_GOAL	Current rover navigation goal			
	NAV_VTT	Visual Target Tracking target			
	WHEEL_RR	Right rear wheel			
	RSM_BASE	RSM base			
	RSM_HEAD	RSM head			
		Joint-space (coordinate type must be			
	RSM_JOINTS	JOINTS_ABS)			
Remote	NCAML	Left Navcam on active rover computer			
Sensing	NCAMR	Right Navcam on active rover computer			
Mast (RSM)	RMI	ChemCam Remote Micro Imager			
,	MCAML	Left Mastcam			
	MCAMR	Right Mastcam			
	CCAM_CAL	ChemCam calibration target			
	MCAM_CAL	Mastcam calibration target			
	SUN	Sun			
Inertial	Earth	Earth			
Vectors	Phobos	Phobos			
	Deimos	Deimos			

Frame					
Type	FRAME	Description			
	ARM	Robotic arm base			
	TURRET	Robotic arm turret			
	MAHLI	MAHLI			
	SCOOP_TIP	Scoop tip			
	SCOOP_TCP	Scoop tool control point			
	PORTION	CHIMRA portioner			
	APXS	APXS			
SA/SPaH	DRILL	Drill			
SAYSFall	DRT	Dust removal tool			
	ARM_TGT	Arm target			
	ARM_GUARDED	Last arm guarded move			
	DROPOFF	CHIMRA dropoff frame			
	SAM1	SAM inlet 1			
	SAM2	SAM inlet 2			
	CHEMIN	Chemin inlet			
	OCM1, OCM2, etc.	Indexed Organic Check Material			
	TRAY	observation tray			
	RAD	RAD instrument on the rover deck			
	REMS_UV	REMS UV sensor on the rover deck			
Other	REMS_BOOM1	REMS Boom 1			
Body	REMS_BOOM2	REMS Boom 2			
Mounted	HCAML	Left Hazcam on active rover computer			
	HCAMR	Right Hazcam on active rover computer			
	FIDUCIAL	Indexed fiducials			