IPB

Welcome Guest ( Log In | Register )

6 Pages V   1 2 3 > »   
Reply to this topicStart new topic
First 2009 MSL Landing Site Workshop
Guest_AlexBlackwell_*
post Jan 18 2006, 03:57 PM
Post #1





Guests






* * * * * * * * * * * * * * * * * * * * * * * *
FIRST ANNOUNCEMENT FIRST ANNOUNCEMENT
* * * * * * * * * * * * * * * * * * * * * * * * *

FIRST LANDING SITE WORKSHOP FOR THE
2009 MARS SCIENCE LABORATORY
May 31st-June 2, 2006
Pasadena, CA

* * * * * * * * * * * * * * * * * * * * * * * *
FIRST ANNOUNCEMENT FIRST ANNOUNCEMENT
* * * * * * * * * * * * * * * * * * * * * * * * *

Dear Colleagues:

You are invited to participate in the First Landing Site Workshop for the 2009 Mars Science Laboratory (MSL) rover mission to Mars. The workshop will be held May 31 through June 2, 2006, in Pasadena, California.

AN OVERVIEW OF WORKSHOP OBJECTIVES:

The purpose of the Landing Site workshop is to identify and evaluate potential landing sites best suited to achieving stated mission science objectives within the constraints imposed by engineering requirements, planetary protection requirements, and the necessity of ensuring a safe landing. A NASA-appointed Landing Site Steering Committee and the Mars Science Laboratory Project will use the results of the workshop as the basis for narrowing the list of potential landing sites under consideration. Community consensus with respect to high priority sites will also be solicited. In addition, the workshop will provide a means for identifying potential landing sites as targets for imaging by the MGS, Odyssey, MRO, and perhaps other orbital assets. Note: the number of potential landing sites is high because MSL entry, descent, and landing capabilities enable a small landing error ellipse (20 km diameter), high landing site altitude (<2 km), and wide latitudes (±60°).

MISSION SCIENCE OBJECTIVES:

The primary scientific goal of the Mars Science Laboratory (MSL) is to assess the present and past habitability of the martian environments accessed by the mission. Habitability is defined as the potential of an environment to support life, as we know it. Such assessments require integration of a wide variety of chemical, physical, and geological observations. In particular, MSL will assess the biological potential of the regions accessed, characterize their geology and geochemistry at all appropriate spatial scales, investigate planetary processes that influence habitability, including the role of water, and characterize the broad spectrum of surface radiation. To enable these investigations, MSL will carry a diverse payload capable of making environmental measurements, remotely sensing the landscape around the rover, performing in situ analyses of rocks and soils, and acquiring, processing, and ingesting samples of rocks and soils into onboard laboratory instruments. A candidate landing site should contain evidence suggestive of a past or present habitable environment. To the extent that it can be determined with existing data, the geological, chemical, and/or biological evidence for habitability should be expected to be preserved for, accessible to, and interpretable by the MSL investigations.

An overview of the MSL mission can viewed at http://mars.jpl.nasa.gov/msl/overview. A summary of NASA's Mars exploration strategy is at http://mars.jpl.nasa.gov/mep/mslides/index.html and additional information can be viewed at http://mepag.jpl.nasa.gov/reports/index.html. Web tools for visualizing and analyzing relevant Mars data as well as an archive of previously proposed and selected landing sites are available at http://marsoweb.nas.nasa.gov/landingsites/ and http://webgis.wr.usgs.gov/, which also includes a web based GIS interface for relevant Mars data. Web sites for MSL landing site selection activities are http://marsoweb.nas.nasa.gov/landingsites/ and the USGS PIGWAD site http://webgis.wr.usgs.gov/msl, where workshop announcements, program, and abstracts can be accessed along with more detailed descriptions of the MSL mission, science objectives and investigations, and instruments.

PLANETARY PROTECTION CONSIDERATIONS:

The MSL project has been assigned to Category IVc by NASA's Planetary Protection Office with constraints on the landing site and regions accessed from it. Specifically, MSL is limited to landing sites not known to have extant water or water-ice within one meter of the surface. Later access to "special regions" defined in NPR 8020.12C (regions where terrestrial organisms are likely to propagate, or interpreted to have a high potential for the existence of extant martian life forms) is permitted only in the vertical direction through use of sterilized sampling hardware. The above are general guidelines for site selection; compliance of specific landing sites and nearby regions will be determined through discussions with the Planetary Protection Office during the site selection process.

MISSION ENGINEERING CONSTRAINTS:

Because the ability to ensure a successful landing for MSL is paramount, consideration of landing sites must include comprehensive assessment of limitations imposed by mission engineering constraints. Although these constraints continue to be established and refined, a description of preliminary values related to allowable locations, elevation, and surface properties follows.

The entry, descent and landing scenario employed by the Mars Science Laboratory (MSL) flight system places engineering constraints on what would be considered a safe landing site of high scientific interest. The dominant considerations in landing site placement are latitude, elevation and the landing ellipse size. The MSL flight system is capable of landing in a circle of 20 km diameter, within which everywhere must be safe for landing and roving. This circle can be placed anywhere on Mars that is below +2 km MOLA elevation and within 60° latitude of the equator (60°N to 60°S). Steady state horizontal and vertical winds and wind gusts are a concern during descent and landing, so areas with potentially high winds will need to be compared with landing system tolerance during development. The landing system uses a radar altimeter, so the entire landing site must be radar reflective. Slopes at long and intermediate (2-5 km and 20 m) wavelength could negatively impact the altimeter, requiring slopes over 2-5 km length scales <3° and slopes over 20 m length scales <15°. Short wavelength slopes affect landing stability and trafficability, requiring slopes over 5 m length scales <15°. Rocks higher than 0.6 m are a problem for landing, requiring areas with intermediate or lower rock abundance. The landing surface must be load bearing and trafficable and so must not be dominated by dust. Persistent cold surface temperatures and CO2 frost will negatively impact performance. These latter three considerations will likely eliminate areas with very low thermal inertia and very high albedo. Surface characteristics (short wavelength slope, rocks and dust) of a trafficable surface are similar to those required for safe landing, except the small landing ellipse and long traverse capability allow the possibility of considering "go to" sites. These sites have a safe landing site adjacent to the target of science interest and require traversing outside of the landing ellipse to sample the materials of highest interest. In this case, the area that must be traversed to get into the region of highest science interest (required to accomplish the science objectives of the mission) must be trafficable from anywhere within the ellipse. All of the values for the parameters discussed will be refined during continuing design and development of the spacecraft, with updates posted on the web site, as will a more detailed discussion of these constraints. We expect the first posting around February 1, 2006 at http://marsoweb.nas.nasa.gov/landingsites/ and the USGS PIGWAD site: http://webgis.wr.usgs.gov/msl

All persons planning to participate in the workshop should review the science, engineering, and planetary protection constraints carefully, as only those landing sites that meet these constraints will be accepted for presentation at the workshop.

HOW TO PARTICIPATE:

All members of the scientific community are encouraged to participate in this important activity. Persons wishing to make a presentation at the workshop are urged to carefully review the science objectives and engineering and planetary protection constraints at http://marsoweb.nas.nasa.gov/landingsites/ and at the USGS PIGWAD web site noted above.

Most of the workshop will be devoted to submitted papers describing: (1) the overall types of sites for MSL based on associated scientific and programmatic rationale and suitability for safe landing and roving; and (2) individual landing sites on Mars and their scientific merit and safety. Individuals must prepare an abstract (no longer than one page using standard LPSC abstract format) summarizing their proposed topic or site. Talks advocating an individual site must summarize the science merits and demonstrate that the proposed location satisfies the mission science, planetary protection, and engineering requirements. A clear statement of the rationale for continued consideration as a possible landing site should also be included. A program will be prepared from the submitted abstracts and will be posted along with logistical information in late April, 2006.

Abstracts (no longer than one page using standard LPSC abstract format) are due by March 28, 2006, and should be submitted electronically via http://marsoweb.nas.nasa.gov/landingsites/. Detailed instructions on abstract format and submission will also be posted at this web site in February, 2006.

LOGISTICS FOR THE WORKSHOP:

The workshop will be held in the vicinity of JPL in Pasadena, CA, and there will not be a registration fee. In order to get a sense of the number of people likely to attend the workshop, interested individuals should indicate their intent to attend via http://marsoweb.nas.nasa.gov/landingsites/ by April 1st, 2006. Although we anticipate mostly oral presentations, there may also be poster sessions. Additional logistical information about the workshop will be distributed to the community in subsequent announcements and will be posted at: http://marsoweb.nas.nasa.gov/landingsites/ and http://webgis.wr.usgs.gov/msl Input from the science community is critical to identification of optimal landing sites for the MSL. We look forward to your involvement in these activities!

Regards,

John Grant and Matt Golombek
Co-Chairs, Mars Landing Site Steering Committee
Go to the top of the page
 
+Quote Post
CosmicRocker
post Jan 23 2006, 06:37 AM
Post #2


Senior Member
****

Group: Members
Posts: 2228
Joined: 1-December 04
From: Marble Falls, Texas, USA
Member No.: 116



I received this in email today. I haven't even begun to digest it all yet, but it really gives one a sense of the many complexities that must be considered by those who would compete in a game like this. It's kind of long, but I thought some of you would like to see it.

It's also kind of exciting to get a glimpse of the things planned for MSL. Now, I better appreciate some of the stuff the various space mission teams had to consider before they were selected for the end game. This is interesting stuff...

Oh, and just in case anyone thinks I am one of the "colleages" it was addressed to, I'm not. I just managed to land in some address list.

*********************

* * * * * * * * * * * * * * * * * * * * * * * *
FIRST ANNOUNCEMENT FIRST ANNOUNCEMENT
* * * * * * * * * * * * * * * * * * * * * * * * *

FIRST LANDING SITE WORKSHOP FOR THE
2009 MARS SCIENCE LABORATORY
May 31st-June 2, 2006
Pasadena, CA

* * * * * * * * * * * * * * * * * * * * * * * *
FIRST ANNOUNCEMENT FIRST ANNOUNCEMENT
* * * * * * * * * * * * * * * * * * * * * * * * *

Dear Colleagues:

You are invited to participate in the First Landing Site Workshop for the 2009 Mars Science Laboratory (MSL) rover mission to Mars. The workshop will be held May 31 through June 2, 2006, in Pasadena, California.

AN OVERVIEW OF WORKSHOP OBJECTIVES:

The purpose of the Landing Site workshop is to identify and evaluate potential landing sites best suited to achieving stated mission science objectives within the constraints imposed by engineering requirements, planetary protection requirements, and the necessity of ensuring a safe landing. A NASA-appointed Landing Site Steering Committee and the Mars Science Laboratory Project will use the results of the workshop as the basis for narrowing the list of potential landing sites under consideration. Community consensus with respect to high priority sites will also be solicited. In addition, the workshop will provide a means for identifying potential landing sites as targets for imaging by the MGS, Odyssey, MRO, and perhaps other orbital assets. Note: the number of potential landing sites is high because MSL entry, descent, and landing capabilities enable a small landing error ellipse (20 km diameter), high landing site altitude (<2 km), and wide latitudes (±60°).

MISSION SCIENCE OBJECTIVES:

The primary scientific goal of the Mars Science Laboratory (MSL) is to assess the present and past habitability of the martian environments accessed by the mission. Habitability is defined as the potential of an environment to support life, as we know it. Such assessments require integration of a wide variety of chemical, physical, and geological observations. In particular, MSL will assess the biological potential of the regions accessed, characterize their geology and geochemistry at all appropriate spatial scales, investigate planetary processes that influence habitability, including the role of water, and characterize the broad spectrum of surface radiation. To enable these investigations, MSL will carry a diverse payload capable of making environmental measurements, remotely sensing the landscape around the rover, performing in situ analyses of rocks and soils, and acquiring, processing, and ingesting samples of rocks and soils into onboard laboratory instruments. A candidate landing site should contain evidence suggestive of a past or present habitable environment. To the extent that it can be determined with existing data, the geological, chemical, and/or biological evidence for habitability should be expected to be preserved for, accessible to, and interpretable by the MSL investigations.

An overview of the MSL mission can viewed at http://mars.jpl.nasa.gov/msl/overview. A summary of NASA's Mars exploration strategy is at http://mars.jpl.nasa.gov/mep/mslides/index.html and additional information can be viewed at http://mepag.jpl.nasa.gov/reports/index.html. Web tools for visualizing and analyzing relevant Mars data as well as an archive of previously proposed and selected landing sites are available at http://marsoweb.nas.nasa.gov/landingsites/and http://webgis.wr.usgs.gov/, which also includes a web based GIS interface for relevant Mars data. Web sites for MSL landing site selection activities are http://marsoweb.nas.nasa.gov/landingsites/ and the USGS PIGWAD site http://webgis.wr.usgs.gov/msl, where workshop announcements, program, and abstracts can be accessed along with more detailed descriptions of the MSL mission, science objectives and investigations, and instruments.

PLANETARY PROTECTION CONSIDERATIONS:

The MSL project has been assigned to Category IVc by NASA's Planetary Protection Office with constraints on the landing site and regions accessed from it. Specifically, MSL is limited to landing sites not known to have extant water or water-ice within one meter of the surface. Later access to "special regions" defined in NPR 8020.12C (regions where terrestrial organisms are likely to propagate, or interpreted to have a high potential for the existence of extant martian life forms) is permitted only in the vertical direction through use of sterilized sampling hardware. The above are general guidelines for site selection; compliance of specific landing sites and nearby regions will be determined through discussions with the Planetary Protection Office during the site selection process.

MISSION ENGINEERING CONSTRAINTS:

Because the ability to ensure a successful landing for MSL is paramount, consideration of landing sites must include comprehensive assessment of limitations imposed by mission engineering constraints. Although these constraints continue to be established and refined, a description of preliminary values related to allowable locations, elevation, and surface properties follows.

The entry, descent and landing scenario employed by the Mars Science Laboratory (MSL) flight system places engineering constraints on what would be considered a safe landing site of high scientific interest. The dominant considerations in landing site placement are latitude, elevation and the landing ellipse size. The MSL flight system is capable of landing in a circle of 20 km diameter, within which everywhere must be safe for landing and roving. This circle can be placed anywhere on Mars that is below +2 km MOLA elevation and within 60° latitude of the equator (60°N to 60°S). Steady state horizontal and vertical winds and wind gusts are a concern during descent and landing, so areas with potentially high winds will need to be compared with landing system tolerance during development. The landing system uses a radar altimeter, so the entire landing site must be radar reflective. Slopes at long and intermediate (2-5 km and 20 m) wavelength could negatively impact the altimeter, requiring slopes over 2-5 km length scales <3° and slopes over 20 m length scales <15°. Short wavelength slopes affect landing stability and trafficability, requiring slopes over 5 m length scales <15°. Rocks higher than 0.6 m are a problem for landing, requiring areas with intermediate or lower rock abundance. The landing surface must be load bearing and trafficable and so must not be dominated by dust. Persistent cold surface temperatures and CO2 frost will negatively impact performance. These latter three considerations will likely eliminate areas with very low thermal inertia and very high albedo. Surface characteristics (short wavelength slope, rocks and dust) of a trafficable surface are similar to those required for safe landing, except the small landing ellipse and long traverse capability allow the possibility of considering "go to" sites. These sites have a safe landing site adjacent to the target of science interest and require traversing outside of the landing ellipse to sample the materials of highest interest. In this case, the area that must be traversed to get into the region of highest science interest (required to accomplish the science objectives of the mission) must be trafficable from anywhere within the ellipse. All of the values for the parameters discussed will be refined during continuing design and development of the spacecraft, with updates posted on the web site, as will a more detailed discussion of these constraints. We expect the first posting around February 1, 2006 at http://marsoweb.nas.nasa.gov/landingsites/ and the USGS PIGWAD site: http://webgis.wr.usgs.gov/msl

All persons planning to participate in the workshop should review the science, engineering, and planetary protection constraints carefully, as only those landing sites that meet these constraints will be accepted for presentation at the workshop.

HOW TO PARTICIPATE:

All members of the scientific community are encouraged to participate in this important activity. Persons wishing to make a presentation at the workshop are urged to carefully review the science objectives and engineering and planetary protection constraints at http://marsoweb.nas.nasa.gov/landingsites/ and at the USGS PIGWAD web site noted above.

Most of the workshop will be devoted to submitted papers describing: (1) the overall types of sites for MSL based on associated scientific and programmatic rationale and suitability for safe landing and roving; and (2) individual landing sites on Mars and their scientific merit and safety. Individuals must prepare an abstract (no longer than one page using standard LPSC abstract format) summarizing their proposed topic or site. Talks advocating an individual site must summarize the science merits and demonstrate that the proposed location satisfies the mission science, planetary protection, and engineering requirements. A clear statement of the rationale for continued consideration as a possible landing site should also be included. A program will be prepared from the submitted abstracts and will be posted along with logistical information in late April, 2006.

Abstracts (no longer than one page using standard LPSC abstract format) are due by March 28, 2006, and should be submitted electronically via http://marsoweb.nas.nasa.gov/landingsites/. Detailed instructions on abstract format and submission will also be posted at this web site in February, 2006.

LOGISTICS FOR THE WORKSHOP:

The workshop will be held in the vicinity of JPL in Pasadena, CA, and there will not be a registration fee. In order to get a sense of the number of people likely to attend the workshop, interested individuals should indicate their intent to attend via http://marsoweb.nas.nasa.gov/landingsites/ by April 1st, 2006. Although we anticipate mostly oral presentations, there may also be poster sessions. Additional logistical information about the workshop will be distributed to the community in subsequent announcements and will be posted at: http://marsoweb.nas.nasa.gov/landingsites/ and http://webgis.wr.usgs.gov/msl Input from the science community is critical to identification of optimal landing sites for the MSL. We look forward to your involvement in these activities!

Regards,

John Grant Matt Golombek
Co-Chairs, Mars Landing Site Steering Committee


--------------------
...Tom

I'm not a Space Fan, I'm a Space Exploration Enthusiast.
Go to the top of the page
 
+Quote Post
odave
post Jan 23 2006, 03:13 PM
Post #3


Member
***

Group: Members
Posts: 510
Joined: 17-March 05
From: Southeast Michigan
Member No.: 209



I found the minutes of the MER 2003 landing site workshops fascinating reading, especially in light of what the MERs actually found. There's certainly a lot of give-and-take. It also shows how much more work will need to be done in picking a site for MSL, given its more flexible capabilities.

And you've got to love a steering committee that will meet at a place called "BJOs Pub and Brewery" smile.gif


--------------------
--O'Dave
Go to the top of the page
 
+Quote Post
Guest_exobioquest_*
post Jan 23 2006, 07:44 PM
Post #4





Guests






Shouldn’t this be moved to the MSL sub-forum?

So do any of you guys think the areas Mars Express found hydrated silicates (implying long time exposures to neutral or alkaline water) at are primary targets?
Go to the top of the page
 
+Quote Post
Guest_paulanderson_*
post Jan 23 2006, 10:15 PM
Post #5





Guests






QUOTE (exobioquest @ Jan 23 2006, 11:44 AM)
So do any of you guys think the areas Mars Express found hydrated silicates (implying long time exposures to neutral or alkaline water) at are primary targets?
*

Absolutely. More so than the acidic sulphate areas, at least in terms of possible past biological evidence.
Go to the top of the page
 
+Quote Post
Guest_AlexBlackwell_*
post Jan 23 2006, 11:08 PM
Post #6





Guests






QUOTE (exobioquest @ Jan 23 2006, 07:44 PM)
Shouldn’t this be moved to the MSL sub-forum?
That's a good idea, and I should have placed it there to begin with (actually, I thought I did). Maybe Doug or one of the "trustees" can do it?
Go to the top of the page
 
+Quote Post
djellison
post Jan 23 2006, 11:20 PM
Post #7


Founder
****

Group: Chairman
Posts: 14431
Joined: 8-February 04
Member No.: 1



Done smile.gif

Doug
Go to the top of the page
 
+Quote Post
Guest_AlexBlackwell_*
post Jan 23 2006, 11:43 PM
Post #8





Guests






QUOTE (odave @ Jan 23 2006, 03:13 PM)
I found the minutes of the MER 2003 landing site workshops fascinating reading, especially in light of what the MERs actually found.
I agree. In fact, I think the MER landing sites selection story was just as fascinating as the engineering story (e.g., the development headaches of the EDL systems). However, except for some coverage in Squyres's book, the former is hardly mentioned in the popular literature. I guess shredded parachutes and airbags makes for a "sexier" story, not to mention better visuals, than, say, the PowerPoint presentations giving the relative merits of Athabasca Valles over Gusev Crater.

This post has been edited by AlexBlackwell: Jan 24 2006, 03:49 PM
Go to the top of the page
 
+Quote Post
Guest_AlexBlackwell_*
post Jan 23 2006, 11:44 PM
Post #9





Guests






QUOTE (djellison @ Jan 23 2006, 11:20 PM)
Done smile.gif
Thanks, Doug.
Go to the top of the page
 
+Quote Post
elakdawalla
post Jan 24 2006, 03:20 AM
Post #10


Administrator
****

Group: Admin
Posts: 5172
Joined: 4-August 05
From: Pasadena, CA, USA, Earth
Member No.: 454



QUOTE (AlexBlackwell @ Jan 23 2006, 03:43 PM)
I agree.  In fact, I think the MER landing sites selection story was just as fascinating as the engineering story (e.g., the development headaches of the EDL systems).  However, except for some coverage in Squyres's book, the former is hardly mentioned in the popular literature.  I guess shredded parachutes and airbags makes for a "sexier" story, not to mentione better visuals, than, say, the PowerPoint presentations giving the relative merits of Athabasca Valles over Gusev Crater.
*

It was completely fascinating to watch -- and I was lucky enough to attend three of the meetings. Those of you who are Society members may have seen an article I wrote about the site selection process for The Planetary Report (it was the May/June 2003 issue). At one point when they were fretting about airbag and parachute problems they had eliminated every single possible landing site except Meridiani, and even at that site there was some concern about winds. Fortunately as testing and development proceeded, and as more MOC images came back, they were able to relax the constraints just enough to permit them to send four site recommendations upstairs. I hope I get to see the whole process again for MSL...

--Emily


--------------------
My website - My Patreon - @elakdawalla on Twitter - Please support unmannedspaceflight.com by donating here.
Go to the top of the page
 
+Quote Post
Guest_BruceMoomaw_*
post Jan 24 2006, 05:11 AM
Post #11





Guests






Which certainly shows the vulnerability of the airbag system.
Go to the top of the page
 
+Quote Post
edstrick
post Jan 24 2006, 10:03 AM
Post #12


Senior Member
****

Group: Members
Posts: 1870
Joined: 20-February 05
Member No.: 174



I'd really like to see a retrospective on the MER site selection. They had Meridiani dead on, but in retrospect, Gusev was a bad pick, turned lucky only by the total luck of the rover's long life and relative closeness of the hills.

Some of the geologists proposing sites were saying "I TOLD YOU SO" after the lakebed turned out to have impenetrable armor of some tens (probably) of meters of basalt. I'd like a good idea how the "it's not lakebed, it's basalt" arguements lost during the selection process.
Go to the top of the page
 
+Quote Post
djellison
post Jan 24 2006, 10:08 AM
Post #13


Founder
****

Group: Chairman
Posts: 14431
Joined: 8-February 04
Member No.: 1



MSL's landing site HAS to be a good one - I dont think they can make the call until MRO is there. There's be some case for Meridiani I'm sure, or perhaps other Hematite sites - but I can't imagine them wanting to use a low altitude site given all the money and effort being spent on making higher altitude sites accesable.

It's not a decision I'd like to make.

Doug
Go to the top of the page
 
+Quote Post
Burmese
post Jan 24 2006, 01:35 PM
Post #14


Member
***

Group: Members
Posts: 252
Joined: 27-April 05
Member No.: 365



I suspect they may go to Meridiani in any case. It is a known quantity, clearly has had water in the past, and MSL could cover huge distances in that terrain.
Go to the top of the page
 
+Quote Post
Phil Stooke
post Jan 24 2006, 01:47 PM
Post #15


Solar System Cartographer
****

Group: Members
Posts: 10122
Joined: 5-April 05
From: Canada
Member No.: 227



The story of site selection is one I am particularly interested in, and it's one I am covering in depth in my moon atlas. Next step is a Mars version, and you can be sure I will be covering all this in detail. It was great to have access to all that material for Mars 2001 and MER on the Ames website, and I hope we will see it again for MER. Phoenix has not been as open, but that's because the regional-level selection is fixed from the start by the mission definition. We should see more after they down-select from three areas to one this summer, and then the actual ellipse definition begins.

I find it hard to imagine that MSL will not go to one of the layered outcrop areas. But there are lots of them. I don't think there is any reason to go back to the Opportunity region, though areas to the north where the evaporites are widely exposed could be candidates. Being a known quantity works against it, not for it. But there are so many places with great stacks of exposed layers to compete with it... or maybe the floors of the great sedimentary basins.

I have only recently come to terms with the idea that MSL could operate for a decade... looking at the recent list of proposed missions, I was frustrated that there was so long between rover missions, but there won't be unless we have a failure. But that implies that MSL must choose a place with an excellent primary mission goal, and also lots of scope for a very long extended mission. A one-target site won't do unless it is of outstanding scientific value. Perhaps for that reason a 'White Rock' type site in a crater may be too restrictive.

Phil


--------------------
... because the Solar System ain't gonna map itself.

Also to be found posting similar content on https://mastodon.social/@PhilStooke
NOTE: everything created by me which I post on UMSF is considered to be in the public domain (NOT CC, public domain)
Go to the top of the page
 
+Quote Post

6 Pages V   1 2 3 > » 
Reply to this topicStart new topic

 



RSS Lo-Fi Version Time is now: 19th March 2024 - 08:39 AM
RULES AND GUIDELINES
Please read the Forum Rules and Guidelines before posting.

IMAGE COPYRIGHT
Images posted on UnmannedSpaceflight.com may be copyrighted. Do not reproduce without permission. Read here for further information on space images and copyright.

OPINIONS AND MODERATION
Opinions expressed on UnmannedSpaceflight.com are those of the individual posters and do not necessarily reflect the opinions of UnmannedSpaceflight.com or The Planetary Society. The all-volunteer UnmannedSpaceflight.com moderation team is wholly independent of The Planetary Society. The Planetary Society has no influence over decisions made by the UnmannedSpaceflight.com moderators.
SUPPORT THE FORUM
Unmannedspaceflight.com is funded by the Planetary Society. Please consider supporting our work and many other projects by donating to the Society or becoming a member.