Mercury Orbit Insertion, Events and Discussion leading up to MOI |
Mercury Orbit Insertion, Events and Discussion leading up to MOI |
Nov 25 2009, 05:30 AM
Post
#1
|
|
Senior Member Group: Members Posts: 1018 Joined: 29-November 05 From: Seattle, WA, USA Member No.: 590 |
Excerpts from a new press release from the Messenger Team:
QUOTE Deep-Space Maneuver Positions MESSENGER for Mercury Orbit Insertion The Mercury-bound MESSENGER spacecraft completed its fifth and final deep-space maneuver of the mission today, providing the expected velocity change needed to place the spacecraft on course to enter into orbit about Mercury in March 2011. . . . today's maneuver began at 4:45 p.m. EST. Mission controllers at The Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Md., verified the start of the maneuver about 12 minutes, 49 seconds later, when the first signals indicating spacecraft thruster activity reached NASA's Deep Space Network tracking station outside Goldstone, Calif. "The team was well-prepared for the maneuver," said MESSENGER Mission Systems Engineer Eric Finnegan, of APL. "Initial data analysis indicates an extremely accurate maneuver execution. After sifting through all the post-burn data I expect we will find ourselves right on target." --Greg |
|
|
Dec 4 2009, 05:13 PM
Post
#2
|
|
Administrator Group: Admin Posts: 5172 Joined: 4-August 05 From: Pasadena, CA, USA, Earth Member No.: 454 |
That was quick! This is from Jim McAdams, MESSENGER Mission Design Lead Engineer. I can't say I understand it all -- the physics of trajectories is not one of my strengths.
QUOTE (Jim McAdams) The lowest arrival velocity for a spacecraft on a ballistic trajectory approaching Mercury is achieved when Mercury is at perihelion. For much of the interplanetary cruise phase, this option served as a contingency back-up for the MESSENGER prime trajectory. As much as 200 m/s delta-V savings were possible with this option. This option required an additional two Mercury flybys (one a few days before the current MOI and another 88 days later) and an increase in launch-to-MOI time of 128-130 days – slightly less than 1.5 orbits of Mercury around the Sun.
Now here is why this trajectory option was not chosen as the baseline for MESSENGER. The timing of MESSENGER propulsive maneuvers is based on selecting a spacecraft orientation that positions the sunshade between the Sun and sensitive components of the spacecraft. At close range to the Sun, permanent damage or spacecraft failure can occur in as little as an hour without sunshade protection. A peer-reviewed complex orbit insertion sequence of 6-7 maneuvers (vs. 1 or 2 maneuvers for the nominal mission plan) is required to place the spacecraft in the science-defined initial orbit about MESSENGER. This process takes over 6 weeks, adding significant risk and further delay. The primary reason that the sequence is so complex is that the Mercury-relative arrival geometry leads to an initial orbit inclination of 89-90 degrees – not the 80-83 degrees desired for initial orbit inclination. To achieve a low-cost orbit inclination change, the initial orbit must have a much larger orbit period. This subjects the orbit to large perturbations from solar gravity. Solar gravity alone can be used to make most or all of the orbit inclination change from 89-90 degrees to 80-83 degrees, but other changes to the orbit introduce the need for multiple corrective maneuvers after initial orbit insertion. With arrival near Mercury’s aphelion and achieving the required spacecraft-Sun-relative orbit orientation for thermal stability, the solar gravity perturbations have the OPPOSITE effect that they do for the primary mission with orbit insertion near Mercury’s perihelion. That is, periherm altitude decreases, leading rapidly to impact with Mercury’s surface in the absence of corrective maneuvers. So the orbit periherm altitude no longer drifts from 200 to 450-500 km followed by periherm-lowering delta-V, but drifts from 450-500 km down to 200 km with periherm-raising delta-Vs. After onboard propellant runs out, the potential for extended mission options would be very minimal. Another complicating factor is that the 5th Mercury flyby must occur at relatively low altitude with the spacecraft flying between the Sun and Mercury when Mercury is near its perihelion – subjecting the spacecraft to heat from solar radiation off Mercury’s surface. This altitude can be kept sufficiently high, but there still is a substantial increase of thermal input to the sensitive portions of the spacecraft. -------------------- My website - My Patreon - @elakdawalla on Twitter - Please support unmannedspaceflight.com by donating here.
|
|
|
Lo-Fi Version | Time is now: 1st November 2024 - 12:09 AM |
RULES AND GUIDELINES Please read the Forum Rules and Guidelines before posting. IMAGE COPYRIGHT |
OPINIONS AND MODERATION Opinions expressed on UnmannedSpaceflight.com are those of the individual posters and do not necessarily reflect the opinions of UnmannedSpaceflight.com or The Planetary Society. The all-volunteer UnmannedSpaceflight.com moderation team is wholly independent of The Planetary Society. The Planetary Society has no influence over decisions made by the UnmannedSpaceflight.com moderators. |
SUPPORT THE FORUM Unmannedspaceflight.com is funded by the Planetary Society. Please consider supporting our work and many other projects by donating to the Society or becoming a member. |