Future Venus Missions |
Future Venus Missions |
Jul 1 2005, 01:30 AM
Post
#1
|
|
Solar System Cartographer Group: Members Posts: 10256 Joined: 5-April 05 From: Canada Member No.: 227 |
Oh well, might as well start that new topic since it's already well advanced in the Juno area...
My perspective on landers is as follows. All the landers we've had so far were dropped blind onto an essentially unknown surface. Any future landers can be targeted for specific terrains. It really is not true that we have had representative landings. Even a descent image or two, a panoramic photo plus a bit of surface composition, from a simple Venera-class lander just updated a bit, would be useful if we could put several down at well chosen targets. My choices would be: Examples of the main plains units (smooth, fractured, ridged) tesserae high elevation radar-bright tesserae large fresh lava flow unit ('fluctus') crater dark parabola crater ejecta outflow unit dunes area. And I have always assumed, rightly or wrongly, that it would be relatively easy to put these down, so they ought to be fairly inexpensive as planetary landers go. Phil -------------------- ... because the Solar System ain't gonna map itself.
Also to be found posting similar content on https://mastodon.social/@PhilStooke Maps for download (free PDF: https://upload.wikimedia.org/wikipedia/comm...Cartography.pdf NOTE: everything created by me which I post on UMSF is considered to be in the public domain (NOT CC, public domain) |
|
|
Nov 27 2005, 09:51 AM
Post
#2
|
|
Senior Member Group: Members Posts: 1870 Joined: 20-February 05 Member No.: 174 |
I'd be really interested in knowing the calculated atmospheric opacity between 45 km altitude (just below the lowest observed cloud and haze layers seen by entry probes (more or less) and the surface as a function of wavelength.
We are going to try surface composition variation detection from above the clouds with Venus Express, using infrared that filteres up through the clouds in the atmospheric low-opacity windows, but there will be "no" resolution on the ground.. Basically a 50-some km blur from the 50-some km high main clouds Below the clouds, you have a nearly aerosol-free view down to the surface, with gas absorption, scattering, and near the surface, emission. But at wavelengths long enough that Rayleigh scattering is less than 1, you can image the surface directly with optics-limited resolution. |
|
|
Lo-Fi Version | Time is now: 31st October 2024 - 11:12 PM |
RULES AND GUIDELINES Please read the Forum Rules and Guidelines before posting. IMAGE COPYRIGHT |
OPINIONS AND MODERATION Opinions expressed on UnmannedSpaceflight.com are those of the individual posters and do not necessarily reflect the opinions of UnmannedSpaceflight.com or The Planetary Society. The all-volunteer UnmannedSpaceflight.com moderation team is wholly independent of The Planetary Society. The Planetary Society has no influence over decisions made by the UnmannedSpaceflight.com moderators. |
SUPPORT THE FORUM Unmannedspaceflight.com is funded by the Planetary Society. Please consider supporting our work and many other projects by donating to the Society or becoming a member. |