Venus Atmosphere Puzzle, one man's struggle with atmospheric physics |
Venus Atmosphere Puzzle, one man's struggle with atmospheric physics |
Jun 5 2006, 12:15 PM
Post
#1
|
|
Junior Member Group: Members Posts: 57 Joined: 13-February 06 From: Brisbane, Australia Member No.: 679 |
Hi All
This might seem like a really dumb question, but what's the mass of the Cytherean atmosphere per unit area? At first pass I thought it was easy - same as for an isothermal atmosphere, Po/g, where Po is surface pressure and g is surface gravity. Simple. Except Venus doesn't come close to approximating an isothermal atmosphere. From a graph in Mark Bullock's PhD thesis (Hi Mark if you're visiting) I pulled the figures for Po and To as 92 bar and 735 K, while the left-side of the temperature curve was 250 K at 0.1 bar and 63 km. At about 210 K the temperature drop with altitude stops, then slowly rises into the Cytherean stratosphere. Ok. My atmospheric physics is pretty limited - I 'modelled' that lapse rate pressure curve as a power law: P/Po = (T/To)^n and likewise for density, d/do = (T/To)^n. Temperature, T, as a function of altitude, Z, I computed as T(Z) = To*(1-Z/(n.Zo)). Zo = (k.T/m.g), where k is Boltzmann's constant and m is the molecular mass of the atmosphere. These equations I then integrated between 210 K and 0.033 bar, 70 km, and 735 K and 92 bar, zero altitude. The resulting equation is m = (n/(n+1))*(do.Zo)*(1 - (T/To))^(n+1) - a bit of simple algebra and the Gas equation shows that do.Zo = Po/g. Thus the mass is lower than for a simple isothermal atmosphere by roughly (n/(n+1)). In this case n = 6.33, higher than the dry adiabat for CO2 which gives n = 4.45. Now an adiabatic or polytropic atmosphere is an idealisation, but it seems odd to me that whenever Venus' atmospheric mass is discussed people always use the higher isothermal value. Have I missed something important in the physics, or is Venus's atmospheric mass just 86.4% of the usually quoted value? |
|
|
Jun 14 2006, 09:04 AM
Post
#2
|
|
Senior Member Group: Members Posts: 3516 Joined: 4-November 05 From: North Wales Member No.: 542 |
Hi Messenger. You found my post confusing??!!
I don't think graal and I are in disagreement at all, just thinking through the same thing in different ways, which I for one have found illuminating. The Titan case is very different from Venus because after decreasing to the tropopause the temperature rises strongly but erratically with height. No simple model will do in this case, neither isothermal nor adiabatic. One would have to integrate by the computer equivalent of counting squares under the graph. To make things still more complicated I wouldn't be surprised if the temperature profile varies quite a bit with latitude, season, cryovolcanism and precipitation processes, maybe also interaction with Saturn's magnetosphere. But we have wandered quite a long way from Venus now and should really be in 'Titan's atmosphere and weather'. |
|
|
Lo-Fi Version | Time is now: 31st October 2024 - 11:52 PM |
RULES AND GUIDELINES Please read the Forum Rules and Guidelines before posting. IMAGE COPYRIGHT |
OPINIONS AND MODERATION Opinions expressed on UnmannedSpaceflight.com are those of the individual posters and do not necessarily reflect the opinions of UnmannedSpaceflight.com or The Planetary Society. The all-volunteer UnmannedSpaceflight.com moderation team is wholly independent of The Planetary Society. The Planetary Society has no influence over decisions made by the UnmannedSpaceflight.com moderators. |
SUPPORT THE FORUM Unmannedspaceflight.com is funded by the Planetary Society. Please consider supporting our work and many other projects by donating to the Society or becoming a member. |