Venus Atmosphere Puzzle, one man's struggle with atmospheric physics |
Venus Atmosphere Puzzle, one man's struggle with atmospheric physics |
Jun 5 2006, 12:15 PM
Post
#1
|
|
Junior Member Group: Members Posts: 57 Joined: 13-February 06 From: Brisbane, Australia Member No.: 679 |
Hi All
This might seem like a really dumb question, but what's the mass of the Cytherean atmosphere per unit area? At first pass I thought it was easy - same as for an isothermal atmosphere, Po/g, where Po is surface pressure and g is surface gravity. Simple. Except Venus doesn't come close to approximating an isothermal atmosphere. From a graph in Mark Bullock's PhD thesis (Hi Mark if you're visiting) I pulled the figures for Po and To as 92 bar and 735 K, while the left-side of the temperature curve was 250 K at 0.1 bar and 63 km. At about 210 K the temperature drop with altitude stops, then slowly rises into the Cytherean stratosphere. Ok. My atmospheric physics is pretty limited - I 'modelled' that lapse rate pressure curve as a power law: P/Po = (T/To)^n and likewise for density, d/do = (T/To)^n. Temperature, T, as a function of altitude, Z, I computed as T(Z) = To*(1-Z/(n.Zo)). Zo = (k.T/m.g), where k is Boltzmann's constant and m is the molecular mass of the atmosphere. These equations I then integrated between 210 K and 0.033 bar, 70 km, and 735 K and 92 bar, zero altitude. The resulting equation is m = (n/(n+1))*(do.Zo)*(1 - (T/To))^(n+1) - a bit of simple algebra and the Gas equation shows that do.Zo = Po/g. Thus the mass is lower than for a simple isothermal atmosphere by roughly (n/(n+1)). In this case n = 6.33, higher than the dry adiabat for CO2 which gives n = 4.45. Now an adiabatic or polytropic atmosphere is an idealisation, but it seems odd to me that whenever Venus' atmospheric mass is discussed people always use the higher isothermal value. Have I missed something important in the physics, or is Venus's atmospheric mass just 86.4% of the usually quoted value? |
|
|
Jun 27 2006, 10:21 PM
Post
#2
|
|
Senior Member Group: Members Posts: 1636 Joined: 9-May 05 From: Lima, Peru Member No.: 385 |
Venus' Double Vortex Confirmed in New Animation
A huge "double-eye" atmospheric vortex has been confirmed to exist at the South Pole of the planet Venus. http://www.space.com/scienceastronomy/0606...nus_vortex.html There are two vortex in the South Pole. That is odd!! Scientists think the vortexes are created by a combination of a natural cycling of hot air in the planet's atmosphere and high velocity, westward-blowing winds that take only four days circle the planet. It is still unclear, however, why there are two vortexes at each pole. Rodolfo |
|
|
Guest_DonPMitchell_* |
Jun 28 2006, 01:33 AM
Post
#3
|
Guests |
At last, some pictures from VEX. These are fascinating.
[attachment=6431:attachment] [attachment=6432:attachment] Here are the best previous images of the double vortex, by Pioneer Venus, and the Venera-15 IR spectrometer. |
|
|
Lo-Fi Version | Time is now: 1st November 2024 - 12:29 AM |
RULES AND GUIDELINES Please read the Forum Rules and Guidelines before posting. IMAGE COPYRIGHT |
OPINIONS AND MODERATION Opinions expressed on UnmannedSpaceflight.com are those of the individual posters and do not necessarily reflect the opinions of UnmannedSpaceflight.com or The Planetary Society. The all-volunteer UnmannedSpaceflight.com moderation team is wholly independent of The Planetary Society. The Planetary Society has no influence over decisions made by the UnmannedSpaceflight.com moderators. |
SUPPORT THE FORUM Unmannedspaceflight.com is funded by the Planetary Society. Please consider supporting our work and many other projects by donating to the Society or becoming a member. |