James Webb Space Telescope, information, updates and discussion |
James Webb Space Telescope, information, updates and discussion |
Aug 23 2005, 02:01 PM
Post
#1
|
|
Member Group: Members Posts: 134 Joined: 13-March 05 Member No.: 191 |
The manufacture of the JWST mirror blanks has now been completed.
Despite this milestone, the fate of JWST is still somewhat precarious, because although the scientific bang from the telescope is expected to be huge, the bucks required have increased to a staggering $4.5 billion. A Space.com article on the squeeze in NASA's space-based astronomy plans gives some background. The JWST home page can be found here. The Space Telescope Science Institute, which runs Hubble, also has a site here. As does ESA. |
|
|
Jun 11 2007, 09:39 PM
Post
#2
|
|
Dublin Correspondent Group: Admin Posts: 1799 Joined: 28-March 05 From: Celbridge, Ireland Member No.: 220 |
As promised by Ollopa UMSF folks were allowed to attend. As it transpired I think I could have stayed for the entire day but I had to get back to work for the afternoon so I missed out on the sessions after lunch. These are just my notes so they come with absolutely no warranty whatsoever.
Todays Agenda:
Gave a quick introduction and commented that he is glad to see the telescope that originally was scetched out on a blackboard in 1996 finally getting built with a remarkably similar set of features to the original rough design. He cracked a joke about the fact that the original budget was laughed at by some people who have since been proven correct but emphasized that in adjusted terms the project is now 2x the original budget – so it is over the original estimate but it is now realistic and being held tightly. He made some brief comments about the relevance to JWST's mission of Spitzers recent work, the Hubble Ultra Deep Field and transit Exoplanets. He also made mention of the recent (probable) pair-instability super nova (SN 2006 GY) (he called it a Super Duper Nova ) that has shown that this type of nova may be much more common than had been thought. Their immense brightness and this indication of their frequency pushes back JWST's reach even further out the edge. You could tell that he was very pleased with the project. He then handed over briefly to Gillian Wright (I think) the co-Lead of the MIRI Science Team who briefly thanked the combined team for enabling a full day free of ITAR restrictions so everyone could attend. I was surprised that this got to the top of the agenda but I'm not complaining – I got a free pass in partly because of folks figuring this out. At that point she handed over to John Gardiner – GSFC Senior Project Scientist for the JWST JWST Science Objectives - Gardiner STScI will be managing the operations for JWST. (and as an aside go to http://www.stsci.edu/jwst/ for outline data) JG gave a general purpose JWST overview for the masses – not much new in this but it was a nice intro for those outsiders (like me) who were allowed in for the day. I didn't pick up much new (ie that isn't on the STScI web site) for the first three mission objectives:
He mentioned that coronograph assisted imaging should significantly expand the percentage of systems where JWST will be able to go planet hunting but did not go into much detail. (Later on in the morning Peter Jakobsen pointed out that the lack of a coronograph on NIRSpec means that the there are some additional constraints on what can be done in terms of analysis of non transit exoplanets) Mission overview, Observatory Overview and Reformulation Summary - Menzel & Giampaoli This was mega detailed and I probably missed more than 50% because I simply couldn't keep up while making notes. Fantastic stuff though from my point of view and I'd go back to one of Mike's talks in a heartbeat, he reminds me a bit of Rob Manning – seriously passionate about his machines. Mike said that the data was slightly edited to comply with ITAR because all of us foreigners where there but honestly I wouldn't have noticed if he hadn't specifically pointed out the one spot where some hard numbers had been removed. Anyway some details. All 10 enabling technologies for the mission have now completed "Technology non-advocate review" and are ready for TRL6 more than 12 months ahead of schedule. The major news however is the re-formulation of the project to mitigate some cost and program risks. Mike gave an incredibly detailed explanation of the changes that have been made, whay the were needed and what the impact would be. These were mostly in the arena of decoupling various test processes, equipment and resources (such as test facilities) so that schedule dependencies and interlocks could be removed. The argument and description of the final result was compelling and the major concern that I had when first hearing of this reformulation (that testing was being reduced or that the team was accepting lower specifications) certainly seem to me to not be true now that I have seen this new plan. In particular these changes have enabled the addition of more vibration analysis, cryocycling and cryometrology testing because programmatic interlocks and resource scheduling are now much simpler. Some interesting news on the spacecraft design front are the physical changes that have been introduced with the B2 structural changes. For reference B1 is basically the layout that the large scale model is built to. In particular the following significant (ie visibly noticeable) items have been modified: The Sunshield has changed from a 3-2-2 layout to a 4-2 layout. Sunshield deployment mechanics now follows a 10 folding stage process using what NG call a unitized pallet system (this appears to me to be a rigid shell like shield enclosure for launch and final structure rigidity). This is down from the 24 folding stages in the video we've all seen so this seems to represent a major simplification in the deployment mechanics. The deployed cryo-cooler\radiator system from B1 is now a fixed unit, again reducing the deployment mechanical complexity. The Solar panels have been moved to a single tail-dragger format from the dual side wing format on the B1 layout. The Bib (rhomboidal stray light shield at the base of the main mirror) and the Frill (stray light shield around the top rim of the main mirror) have been made larger. Lots of mass savings have been made – in total about 100kg gross has been removed but some of that has been clawed back elsewhere. Tuned Magnetic Dampers have been added to the secondary mirror mount – these were needed to closeout on a couple of problematic harmonics from the reaction wheels that were preventing the team meeting 70% engineering margins. (I think) Overall project performance metrics are green or will be following the B2 structural changes. Mass is now 5315kg vs a launcher limit of 6530kg. This is a margin of 22.9% vs a required margin of 19.7%. Even adding in some desirable additional items and this only drops to 21.1% which is still healthy. Power subsystem is fine. No news move along. The desirable addional items include spreader rings for the solar shield to improve it's 3D structure, modifications to the shiled spreader bars and a trailing aft shield\trim tab that can be used for spacecraft balancing (at least I think that's what he said). Mike then gave more depth on a specific problem relating to the cables that connect the ambient portion of the ISIM (at ~300K) and the cryosection (at ~35K). These are only 4m long and there is a 270K temperature drop across them that is not currently adequately cooled. They are adding a four stage cooling system to these to resolve this. Finally he put up a slide showing the underside (sun facing side) of the spacecraft bus showing the potential location for a lightweight grapple fixture that could (in theory) be used to facilitate a repair mission at some stage. This is a ~2kg mounting so adding it isn't a major deal in itself. The audience gave it a mixed reaction and Mike certainly seemed to be presenting it as "someone else's idea, not mine". Bob Giampaoli gave a brief update on some of the current work on the deployment mechanics that is ongoing. He specifically invited anyone who was interested to visit the JWST Solar-shield full scale mock-up at the HiBay at NG in Redondo Beach where they will be working on the detailed folding\unfolding mechanism until the end of the year. They are not using pyro's at all for the unfolding\deployment. All mechanical using common locking equipment and deployment motors. I found this very interesting especially since there are a number of points where a single failure will be catastrophic. The addition of the TMD's has also resolved issues for the deployment of the secondary mirror booms – makes it much easier to find an acceptable trade off between the stiffness required for the mirror mount and the flexibility required to deploy. Overall the design is coming in within the Ariane's limits with some minor deviations that they expect to iron out pretty soon. OTE and Wavefront Sensing Overview - Lee Feinberg I was unable to capture the hard numbers properly on this and haven't had a chance to double check them so be especially careful of errors here. If it looks or smells wrong to you, then it probably is. The WSC system is the tuning and aiming system that melds those 18 Beryllium hexagonal mirrors into one near perfect optical element. It leverages the NIRCAM as its imaging sensor. The use of adjustable optics here is to eliminate vibration and keep the mirror PSF stable to within 2%. The WSC will periodically (every 14 days) carry out a full re-work of it's magic to ensure that everything remains precise. Each of the 18 elements have an independent 6 degree of freedom mount using redundant actuators and a single radius of curvature control actuator. Mirror element assembly is at the point where they are just beginning to be polished, all the base machining and light weighting has been done. Lee gave numbers on the progressive improvement in optical accuracy as the WSC process steps through its refining stages =>Basic Alignment => Focus adjustment => Coarse Phasing => Fine Phasing (to <1 Lambda) => Multi field Alignment (<0.5 Lambda ?). The final RMS deviation for a point source is < 0.35 micron. I think, I was struggling to keep up with this. Finally and most importantly Lee walked through the various testing regimes, double checks and independent processes that will be used to prevent a repeat of the Hubble error. Main testing stages: Tinsley (Polishing) – ambient testing Marshall – ambient and cryo testing Johnson SC – Full system testing (cryo again I think) An independent Test Plan Integrity and Review Team are in place to make absolutely sure there are no mistakes. The PDR for the OTE is in November. One item that is interesting here is that Lee definitely said that the WSC process would be executed every 14 days but a number of documentations elsewhere say that wavefront control adjustments would only be needed at greater than 1 month intervals. I'm not sure when this changed. Overall it means that the mission will lose ~12 days observing time per year for this vs 6. NIRCam and NIRSpec reports to follow tomorrow. |
|
|
Guest_Analyst_* |
Jun 19 2007, 12:46 PM
Post
#3
|
Guests |
|
|
|
Lo-Fi Version | Time is now: 10th November 2024 - 06:07 PM |
RULES AND GUIDELINES Please read the Forum Rules and Guidelines before posting. IMAGE COPYRIGHT |
OPINIONS AND MODERATION Opinions expressed on UnmannedSpaceflight.com are those of the individual posters and do not necessarily reflect the opinions of UnmannedSpaceflight.com or The Planetary Society. The all-volunteer UnmannedSpaceflight.com moderation team is wholly independent of The Planetary Society. The Planetary Society has no influence over decisions made by the UnmannedSpaceflight.com moderators. |
SUPPORT THE FORUM Unmannedspaceflight.com is funded by the Planetary Society. Please consider supporting our work and many other projects by donating to the Society or becoming a member. |