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Abstract

The Junocam image EFB03 shows mostly stray light. This stray light can be approxi-
mated by sets of 1-dimensional linear functions, the parameters of which can be roughly
approximated by 1-dimensional Gauss functions. Junocam rotates while taking images.
To account for this, it appears appropriate to work with an adjustment of the Gauss
functions to this periodicity. It turns out, however, that the induced effect is small.

The parameters of the 1-dimensional linear functions show skewness and kurtosis. To
account for kurtosis, a family of power-law functions is investigated. To account for the
skewness of the symmetrical power-law functions the parameter can first be transformed
e.g. by an appropriate polyline, or by a Fourier series. Determining the according parame-
ters appears to require numerical methods. Providing partial derivatives of the power-law
functions prepares an application of quasi-Newton methods.

A family of generalized Gauss function as another approach to account for skewness
and kurtosis is mentioned. !
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4 1 INTRODUCTION

1 Introduction

Images taken by Juno’s Education and Outreach camera Junocam during the Earth flyby
(EFB) in October 2013 are providing a first publicly available set of in-flight tests, similar
to the images expected to be taken during Juno’s Jupiter mission starting in mid-2016.
So this article may be put into the context of [1, subsection 6.4], goal 3: ”Provide data
to the amateur image processing community and encourage them to produce a variety of
products”. Raw images are provided online by Malin Space Science Systems, San Diego,
CA, USA (MSSS) [2].

This article is the second part of attempts to approximate the stray light in EFB03 by
empirical functions. Section 2 replaces the Gauss functions of part I by a periodic version
of Gauss functions, to account for the rotation of Junocam.

Section 3 investigates a family of functions which accounts for skewness and kurtosis,
since a closer look to the stray light of EFB03 reveals deviations from Gauss functions
in both these aspects. This approach is considerably more complex than using a Gauss
function, and it appears to require numerical methods to be solved. The section provides
the according methods and calculations. The reader will need some experience with
calculus, Fourier series, and the n-dimensional Newton method.

Section 4 provides some initial steps to an investigation of a family of generalized
Gauss functions, as alternative approach to account for skewness and kurtosis. Methods
for further elaboration have been provided in section 3. At this point it’s not yet obvious,
whether such an elaboration will become useful or necessary, since the application of the
power-law family of function looks like being more suitable to approximate the stray light
than the considered family of generalized Gauss functions; this is conjectural, however.

The appendices list some experimental results.



2 Periodic Version of Gauss Functions

2.1 Definition and Basic Properties

The Gauss function

Gopo : R — R", (1)

1(z— 2
T — a.€7§( cr#) , (2)

with a, p € R, and 0 € R™, shows one local maximum (peak) at p.
For x € R, x > p,

I ey 3

/21In Cra@

Let r € R*. A function G related to the Gauss function, but with the property

G(z) = Gz + 277), (4)
for any x € R, can be defined by
éa7ﬂ7& R — R+, (5)
1(2r z—ji\2
v o a-e2(FniE) ; (6)

with a,i € R, and 6 € Rt. The periodicity G is induced by the m-periodicity of the
squared sinus function. The similarity to the Gauss functions is immediate for % — 0,
since sinz — x, for x — 0.

For x € [, i + 7r),

or sin L£
0= 21—2; (7)
n Ga,ps(T)

2.2 Application to EFB03

Replacing the Gauss functions for the approximations of EFB03 of part I of this article by
the periodic version results in perceivable, but small relative changes of the parameters,

roughly 1% for sigma. This is mainly due to the half number 79/2 of framelets per camera
rotation being about ? . ﬁ ~ 8.6, with a sigma of up to about 4.6 framelets. L.e. one

camera rotation is about +8.6 sigma of the approximating Gauss functions. Appendix A
lists some of the calculated parameters.
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3 A Family of 1-Dimensional Power-Law Peaks

3.1 DMotivation

Closer comparison of the EFB03 stray light with Gauss functions reveals two properties
of the stray light which are difficult to express with modified Gauss functions. These
two properties can roughly subsumed as skewness and kurtosis. Skewness means an
asymmetry with respect to the maximum of the function. Kurtosis means shoulders, in
this case the stray light functions are wider at their basis than Gauss functions of otherwise
similar shape. This could be accounted for, e.g. by a sum of several Gauss functions. Each
Gauss function is described by essentially three parameters. The degrees of freedom of
this family of functions are hence 3-fold the number of summed Gauss functions.

This section investigates an alternative approach with another family of functions,
intended to obtain good approximations with a reduced number of degrees of freedom
relative to equivalent descriptions by sums of Gauss functions.

The starting point is inspired by stray light interpreted as the result of a point light
source emitting radialsymmetric light from some distance to the CCD plane. With d the
distance of the point light source from the CCD, and x the distance on the CCD to the
point on the CCD next to the point light source, a formula similar to

1
h(x) = W (8)

in the simplest case, can be derived geometrically. Experiments with this type of formulas
showed a kurtosis much worse than the Gauss functions. The desired kurtosis was between
the Gauss functions and the newly investigated type of functions, however much closer to
the Gauss function type.

Further experiments with generalized versions of equation (8) showed, that it’s possible
to heal this deficite, with results significantly better than according Gauss functions.
Equation (8) can be re-written as

haa,puo(T) =a- ((M_M)a + 1) B, 9)

0
witha =1, a=2,8= %, 1 =0, and o = d. Adjusting these five parameters appropriately
appeared to allow for good approximations of the 1-dimensional stray light functions in
terms of kurtosis.

Since functions of type (9) are symmetric with p as axis, they don’t allow adjusting
for skewness. Another generalization step appeared recommended. This time inspired
by the periodicity of 1-dimensional stray light functions, as discussed in section 2, and
by the wish to add asymmetry. Both properties, periodicity, and asymmetry, can be
modeled with Fourier series. One approach would be a description of the whole stray
light function as a Fourier series. But this would make interpretations harder, and it
would be less obvious, how an appropriate family of Fourier series should be chosen which
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allows for good approximations and for a low number of degrees of freedom at the same
time.

Just replacing the | z — p | part of equation (9) appeared intuitively easier to access,
and it generalizes the underlying idea of section 2, which has already been shown to be
applicable.

As a very rough approach to account for skewness may serve a replacement of | z — 1 |
by uy- | x —p |, for @ < p, and ug- | @ — p |, for x > p, with uy,us > 0. For z = pu,
[ x—pl=0=u [ —pl

This approach will first be translated into a periodic version by Fourier analysis. The
resulting Fourier series will then be smoothed out, to remove the edge at * = p. The
result will be a family of Fourier series with three parameters, uy, us, and a parameter ¢
for the smoothness at * = . A 1-dimensional stray light curve (for a fixed vertical offset
within each framelet) will then be approximated by a total of eight parameters, with one
parameter probably redundant, since coupled to p. So, choose e.g. uy := ul—l, to reduce the
number of parameters for the 1-dimensional stray light curve to seven. That’s still a data
reduction ratio of 79 : 7 &~ 11 : 1. This choice forces either uq; < 1 < ug, or us < 1 < uy.
Smoothed versions of the Fourier series can be constrained to those with derivative 1 at
x = u. If necessary, this approach can be generalized further.

An obvious way to determine the parameters algebraically doesn’t seem to be readily
available. Therefore an rms minization method will be applied.

3.2 Some Similarity to Gauss Functions

Gauss functions can be approximated in the following sense by some functions h as defined
in equation (9):

Lemma 1 Let

ap:=4-In2, (10)
and

- (1)

0 9 2

Let 0 > 0. Then, forx = pu, and forx =p=+o:

ha,ao,00.1m0 (%) = Gapo(2), (12)

and
h! () =G, (x). (13)

a7a07607u70 a,,o

Straightforward calculation show the lemma:

ha,ao,80.m0 (1) = Gauo (1), (14)
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since
ag —Bo
=
tosnnai) = a- (M) 7 4) (15
= a-(0% 1) (16)
= a-1 (17)
= a, (18)
and
r—r 2

Gapo(p) = a-e 35 (19)
= q-¢20 (20)
= a1 (21)
= (22)
haao,pono(tt £ 0) = Gapo(p + 0), (23)

since

—Bo
uro—
haaosonen£0) = ((' " ') +1) @1
a- (1% +1)" (25)
= q-27" (26)
= q-2 72 (27)
= a-e - (28)
1
= a-e 2, (29)
and
pto—p)?

Gupolt £0) = a-e2("5) (30)
= q-e 2" (31)
— qa-¢? (32)

Kot = (or( (22 ) -
+
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and

since

/
a,a,ﬁ,up

G/

a, 1,0

()

— a~€_%($;u)2 <_QJ—ILL)1
g g
—_ _a.x_u.eié(m;H)Q
0-2
;7040,507/%0(”) = G:z,u,a(:u)7
— o -B-1 _ a—1
() ()
g g g
_ o' —6-1
() )
g g

0,

for any «, 3 not causing singularities, and

since

/
a,00,80,14,0

(1 +o0)

G/

!/

| |
S

Q29|29

a,p,o(ﬂ) = —a-

a,00,00,14,0 (,U + 0)

= G:z,u,a(lu + 0)7

_ ap —Bo—1
acofo ((,u—i-d N) +1)
o

ao o

g

acy fo . 9—fo—1

a

g

4-ln2 - -

2:ln2
g

[\

1
29 el

g

. (1(10 _|_ 1)_/60_1 . 1a0—1

1
. 2_2-1n2_1

i

p+o—p

)Qol

(37)
(38)

(39)

(40)
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and
u+o—p  _1fpto—pu)?
G olp+o) = —a- s ¢ 3 () (56)
a 1
= —— .¢7 2, Y
o (57)
Due to the symmetry of hq o yu.0 and Gy 0 With respect to p, the equations
Ra,a0,80um.0 (B — 0) = Gapo(pt — ), (58)
and
;,ao,ﬁo,u,a(u - 0) = G:J,,u,0'<:u - U) (59)

hold as well. (Details are left as an exercise.) A
Writing the powers in terms of the Euler number e simplifies implementation as com-
puter software in some cases:

Corollary 2 At x = pu, and at v = u + o, the function

a forx =0

ha,ao,ﬂo,,u,cr(x) = —=L _.In (64‘““2)'111(%'“')%»1) (60)

2:In2
a-e , else,

shares function values and first derivatives with

Ga,,u,a-(l') =q - 6_%<I;“)2

zln A

By applying A* = e*™4, write hyap,u0(7) as

SRR ((ESIV o

g

o 6_3.1n (ea»ln( lo ] )+1) | -

and apply it to a = ap, and § = ;. A

Remark 3 Once a Gauss curve approximating a time series is found, Lemma 1 can be
used to find a 0-th approximation within the family of functions of type hg g0
Numerical values for ag and (y are

ap=4-In2=1n16 ~ 2.772588722, (64)
and ] ]
By = R ITY 0.7213475205. (65)
The function value at p 4 o s
Paao,popoc(t £0) =Gopo(pto)=a- e~z ~ 0.6065306597 a. (66)

The derivatives at p £ o are

a,a0,830,1,0

/ (1t £ 0) = Gapolt +0) = F= - e75 ~ F0.6065306597 . (67)
o o
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3.3 Fourier Series for the Linear Case

3.3.1 Basics

11

For the intended applications Fourier series of the following type will be an appropriate

basis:

50 Z ay, - cos(kx) + by, - sin(kx)).

The parameter ag can be calculated by

]_ m
= — d
=) BR(CLE
For k > 1,
1 ™
ap = —/ f(z) cos(kx)dzx,
mwJ—7
and
]_ m
= —/ f(z) sin(kx)dz.
T J—7
3.3.2 Auxillary Integrals
Let
f(z) = uzx + v,
with u,v € R. Let 21 < xs.
With
Co(u,v,x1,29) = / ’ f(x)dz
= / 2(ux+v)d
1
uz? =
Co(u,v, 1, 29) = [2 + vx]
x1
= 7+U$2—7—U$1
Let 1 <k € N. Then
Cr(u,v,21,29) = / ) cos(kx)dz

/ ux + v) cos(kz)dx.

(68)

(72)

(75)

(76)

(77)

(78)
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By partial integration

ur + v

Cr(u,v,21,29) = [ sin(kx) } / —sin(kz)dx

= [um v sin(kx) } [ cos(kx)
UTy + v
= 21{: sin(kxq) + o Cos(/mg)
_umtv sin(kxy) — ﬁ cos(kxy).
Same with
Se(u, v, 21, 29) = f ) sin(kz)d

xr1

/m (ux + v) sin(kz)dx.

By partial integration
ur + v
k
Uxr + v
{_ k
— _U$2k+ Y cos(kxy) + % sin(kxs)
ury + v

cos(kx)

z2 T
—/ ’ —%cos(k:c)dx

Sk(uuv7xlax2) = |:_
X1 1

U x2

cos(ka:)]m + {k? sm(k:x)}

1

cos(kzy) — — Sln(k‘fL‘l)

k2

3.3.3 Line Fragments

Think of a distorted sinus function being crudely approximated by a function f composed

of four lines per 27-period:

(95173/1)

Y = U + Vg

Y =ux

X

Y = —Ux

y=m
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For u; # us, the lines y = uyx and y = usx + vy intersect at (z1,y1), with uyz; = y; =
U917 + Vo, hence for
Vg = Ty — UpTy = (Uy — U2)T1, (89)

N v _ _ U1V
or 1, = ulfuz, and y; = uyxr; = u11_22.

With the constraint usm + v = 0,

Vo = —UaT. (9())
Hence .
2

= 91
X1 Uy — Uy ) ( )

and -
Y= ——. (92)

U — U7

With the constraint —u; - (—7) + v, = 0,
V1 = —um. (93)

Note:
VeeR: f(z—m) = —f(z). (94)

Hence
/ Oﬂ L (95)

and by the additivity of integrals

3.3.4 Fourier Coeflicients

By equation (96), for f the Fourier coefficient aq = 0.

For k > 1,
1 ™
ag = ;/_W f(z) cos(kx)dz (97)
= (Cx(—uq,vy, —m, 21 — ) (98)
+ Ci(—ug,0,21 — m,0) (99)
+ Ck(u1,0,0,27) (100)
+ Ci(ug,ve, 1, 7))/, (101)

or, with equations (91), (93), and (90), and considering

U TT U T — UT + ULTT ULTT

Ug — Uy Uz — U UQ—U1’
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ap = (Ck(—ul, —Uuym, —m, hn (102)
U — Uq

UL
+ Ok<_u2707 H70) (103)

U TT
C 0,0 104
+ k(ula ) 7u2_u1) ( )
+  Cr(ug, —uam, el ,7T)> /. (105)

Ug — Up
The same way,
by = —/ ) sin(kx)d (106)
= (Sk:(_ula —u T, =, ar (107)
U2 — U

U™
Sk(—u9,0, ——,0 108
+ k( Uz, 7u2_u17 ) ( )
+ Si(ur,0,0, 2T (109)

U — Up
U TT
Sy (g, —uyT, : ) . 110
+  Sk(ug, —usm — 7))/ (110)
3.4 Smoothing
Modifying equation (68) to

Z ay, - cos(kx) + by - sin(kx))¢F, (111)

with ¢ > 1 returns a smoothed version of the underlying Fourier series, and it is itself
a Fourier series. Besides smoothing, this modification makes the result shallower. To
account for this effect, and to ensure f'(0) = 1, division by the first derivative at = = 0 is
an approach, if f’(0) is defined. Formally:

o0

flx) = ];(—ak -sin(kx) + by, - cos(kx))k( . (112)

By sin(0) = 0, and cos(0) =1,
= > bek¢F, (113)
k=1

if defined. . .
A smoothed Fourier series f, with f/(0) = 1, can hence be derived from the Fourier
series (68) either as

~

)
J@) = = "
_ 3t vy (ay, - cos(kx) + by, - SiHUm))C_k’ (115)

>z brk¢®



3.5 Considering Skewness and Kurtosis 15
or written formally as Fourier series
flz) = % + 5 (ay - cos(kx) + by - sin(kz)), (116)
k=1
with
A = Wya, (117)
and .
provided the weights wy are defined by
ka
Wy = = 119
* Z?L IS (119)
3.5 Considering Skewness and Kurtosis
3.5.1 An Easy, But Spurious Approach
Apply equation (9) to equation (111) the following way:
h(z) = h (2rf (T‘) + go) , (120)
T
with a scaling factor r, and an offset  with
¢ = —2rf(0). (121)
Although f(0) = 0, f(0) # 0, in general. Equation (121) ensures
h(p) = h(p) (122)
by
h(p) = h<2rf (MQ_TM) —|—g0> (123)
= h(20f (0)+ ) (124)
= h(2rf (0)+p—2rf(0)) (125)
— hp). (126)
Equation (111) can be evaluated at z = 0:
— 50 Z ay - cos(0) + by - sin(0))¢ — —|— Za ¢k (127)

The scaling factor r is determined by the angluar velocity of the camera, and the

frequency the framelet images have been taken. For EFB03, 27r ~

79 framelet heights.

This approach undermines the m-periodicity — like in equation (94) — of the absolute

amount of the Fourier series. This property, however, is desired.
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3.5.2 Saving the m-Quasi-Periodicity

The m-quasi-periodicity of equation (94) is maintained, when the function described by
the Fourier series is shifted horizontally (along the x-axis), instead of vertically:

h(z) = h <2rf <332_TA) + u) . (128)
Determine A, such that
NN
Vi ( o ) — 0, (129)
or A
f(€) =0, (130)
with y
="t - (131)
This way A
h(p) = h(p) (132)
in analogy to equation (122), by
- A —A
hu) = horf <“2T> + u) (133)
h(2r -0+ p1) (134)
h(p) . (135)

Once ¢ is determined, A is obtained from equation (131) by
A= —2r€. (136)

Equation (128) can hence be written as

h(z) = h (27“ f (T) FA+ 2rg> : (137)
with equation (9) adjusted to
o -8
h(x):a.<<|“"_kg_2r§’> +1> . (138)

In many cases, equation (112) allows approximating a ¢ fulfilling equation (130) by
applying a 1-dimensional Newton method, starting with £, = 0, and iterating

~

f (&)

R TS

(139)
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The existence of a &, with f (§) = 0, is necessary; this is not considered as a strong
constraint by design of f , as long as u; and uy # 0; in the context of EFB03 investigation,
|up| and |ug| &~ 1 is to be expected. Applicability depends further on local similarity of f
to ¢(x) = x. In more distorted cases, choosing &, with

’f<£0)| <g,

and ¢ > 0 sufficiently small, may converge more reliably.
This approach violates f'(§) = 1, in general. But this constraint is less important, and
the approach can be adjusted easily by dividing f’ by f’(§), if necessary, and if f'(§) # 0.

3.5.3 Simplification
Merging equation (137) and (138) to

£ x=X . _ o & -8
W):a_((I(zrf(Zr)+A+2r§) A 2§|) +1) |

o
and simplification to

£ z=) @ -8
h(z)=a- ((W) + 1) (141)

suggests dropping of p, and using A as parameter, instead. The somewhat inconvenient
determination of ¢ is eliminated.

(140)

3.6 Determining the Parameters
3.6.1 Basics About Minimizing Square Error Sums

Let n € N. Let (¢;)", be a list (time series) of real numbers. Let (g;(z1,...,2m))",
with m € N, be a family of lists of real numbers, parameterized by the z1,...,x,, € R.
A best list of real numbers within this family is requested, in the sense of minimizing the
square error sum:

n

Q(x1, . ) = S (giT1, ., Tm) — ¢)? = min. (142)

i=1

In many cases the minimum is a local minimum. Such a local minimum can be found
in more or less smart ways by descending from some chosen start vector Xy and looking
for another vector X, such that ¢(X;) < ¢(Xo). This step is repeated, until no better X;
can be found according to some criteria.

Some of the methods usually applied involve the gradient of q. The gradient is the
vector of partial derivatives. Such a partial derivative, say for x;, 1 < k < m, can be
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calculated the following way:

8q(x1,...,xm) 8(2?:1(91<I17 '7xm> - Ci>2)

- 14
0wy, oxy, (143)
" a i\ ,...,l’m — C;
= > 2gix1, .. Tm) — ) (G:(z, o ) (144)
i=1 k
= 0 i\L1y-.-,Tm
= 2 (gil@1,. .y 2m) — i) il 1(% ) (145)
=1 k

7

3.6.2 Applicability of Gradient and Quasi-Newton Methods

Estimating the gradient of a function by difference quotients is numerically unstable,
since function values almost cancel out for small deltas. Larger deltas can result in
high inaccuracies. Therefore working with explicite formulas for the partial derivatives is
desirable.

Partial derivatives of h, defined in equation (141) can be determined explicitely. Rele-
vant are derivatives of h by uy, us, (, a, b, a, 3, 0, and X\. The parameter r can probably
be determined from telemetry data, or by other visual methods. The parameter u, may
be defined as uy := —i.

Calculating the second derivative (Hessian matrix) of ¢, needed for the Newton method,
is too complex to be considered. But, provided the gradient of ¢ behaves well near the
respective equilibrium point, an estimate of the Hessian matrix as a matrix of quotients
of differences from gradients at two points may be sufficient for a quasi-Newton method
to converge in a linear way.

For better numerical stability, Fourier series, including derivatives, should be summed
up in reverse order.

The region of convergence for quasi-Newton methods can be extended by applying the
method to ¢!(x1,...,2,,), with [ > 1, instead of applying it to ¢(z1,...,2,,). The needed
partial derivatives are calculated by

8ql(x1, e Ty)

0q(x,...,xy)
ka )

o (146)

= l-ql_l(xl,...,:z:m)-

This can slow down the convergence considerably, however. It’s therefore more efficient
to reduce the exponent [ stepwise down to 1, as the method approaches the solution.

3.6.3 Partial Derivatives of h

After changing the notation of equation (141), to explicitely show the parameters of

interest
A a -8
A o f (L2
hx(ubu?agaaaa?ﬁ?Q?)\) =a- ((|(Q2T)|) +1) ) (147)
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and defining

[ 2rf (52) |
Fz(UhUQ,C,Q, )\> = (02)7 (148>
hence .
hz(uh Ug, Ca a, 05767 o, )\) =a- (Ff(uh Ug, Ca o, )\) + 1)_67 (149>

here the calculation of the partial derivatives, first with respect to a:

Oha(ur, vz, Caca B0 y) O (a (Fe(uruz o)) +1)77)

_ 1
- - (150)
= (F;(Ul,UQ,g, o, A) +1)_B (151>
When deriving with respect to a, consider
A'y — elnA"/ — efylnA
hence 94 HevinA
Y 7In
_ v =" InA=A"InA,
0y oy
for A > 0:
Ohy(ur, ug, €, a,a, 3, 0, \) (152)
Oa
a (a . (Fg(uhuQa Cv o, )\) + 1)_6)
_ - (153)
Q@
_ —a-Ff(UhU%Qa 0, )‘) lan(uhuQ’C’ o >\) (154)
(Fa?é<u17 U2, C? 0, )\) + 1)IB+1
ertlng }Alz<u17 Us, Cu a, o, 57 o, )\> as
~ 1 B
hl’ ) ) ) 7 ) 7 7>\ = ’ ’ 1
(1,02, G0, B, 0,4) = @ (Fg(ul,m,@@w\)+1> 1
simplifies derivation with respect to (:
8izx(u1, Ua, C, a, o, ﬂa 0, )\)
156
- (156)
1 B
9 (a' (Farmeam) ) (157)
N Ox
B
1 1
_ 1 ) 158
‘ (Fl('l(uhu%gaga)\)"i_l) n<F:ca(u17u27<’Q’)\)+1> ( )

Derivatives of uq, us, ¢, o, and A\ share the common factor
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—a- - aF% Yuy,ug,C, 0, )

Dx(ulau%Ca&)Oéaﬁa 0, >‘) = . (159)
(qu<u17u27 C) o, A) + ]‘)ﬁ—i_l
by
Dx(u17u27C7aaavﬁ7 97)\) (160)
1 <)
. 0 (a ' (FS(U17U27C797>\)+1) ) (161)
o an(“la”%C? 0, /\)
a/ﬁ aFﬁ_l(UthaCaQa)‘)
_ — ~ (162)
(Fa?é(ulau%ga 0, )\)+1) <_F£(u17u27C7 0, )‘>+1)
—a- 3. FO‘_l A
_ a 6 ar, <u17u27<7§;1). (163)
(Fxoé(ula U, Ca 0, )\) + 1)
due to the chain rule.
Deriving with respect to g: First consider
2rf(£52)]
an(u17u2>C> 9, )‘) — 8 (Q ) (164)
do do
27"f z=A
_ _|£22r)‘ (165)
F,
_ x(ubu?aCaQa )‘) (166)
0
Then
Ax A\
ah <u17u27g7Qa705767 0, ) (167)
B
a <(l "\ Fo(u ul A)+1 )
_ ( 2( (;Qz,C,Q, )+ ) (168)
an y W2, 5, 7)\
= Dx(ulau%C?avaaﬁa o, )\) ’ (ul (;L; C : ) (169)
Fm ) b ) 7A
= _Dm(u17u27<7a7a7ﬁa o, )\) ' (UI 2 C ¢ ) (170)
Deriving with respect to A, for = # \:
h A
a x(u17u2727)\a7a7ﬁ7 9, ) (171)
B
0 (a' TRy R YEE: )
_ (Fz( 1, 27(797)‘)+1) (172)

oA
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OF,(uy, us, C, 0, \
= D,(ui,ug, ¢, a,0,8,0,\) - (u1,u2,C, 0,A)

O\
S 5)
- D, A)
(UhUQ,C,(I,Oé,ﬂ,Q, ) 8/\
9 o f =\
= D:r(ulau%Caa:avﬁaQa)‘)';" ‘ a()\QT )|
2r (z—2\ Of (22;)‘)
— Dw(u17u27g7a)a75797>‘)'Q'Sgnf< 9 > aA
2r ~fx— A (=) —1
- Dx(ul,uQ,C,a,Oz,ﬁ,Q,)\)'Q-Sgnf< 2 )f,< 2 )27"
D R _ . _
_ x(u17u27<-7a704767g7>\) -Sgnf (l’ )‘> 'f/ <Qf )\> ]
0 2r 2r

For f', see equation (112).
Continue with the chain rule to get access to the argument of f, for o,r > 0

)l

8|2rf(12;)‘

— 2r ~fT— A\
e = .
= . sgnf( o )
and define
2r T — A
Ex(u17u27<‘7a705757g7>\) = Dx(u17u27<7a’7a757 Q7)\)?Sgnf 9 .
Then
ailm(ul ug, ¢, a,, 3, 0 )\) 0f (xQ_rA)
i s = Ex(ul,UQ,g,a,a,ﬁ,Q,A)'i,
3u1 8”1
s A f (5
? <UI7UQ’C’GJO£767 & ) = E:t(ulau%Ca@vaaﬁa Qa)\) (2 )7
8u2 au2
aiLa:u y U2, 6,0, Q, D, a)‘ f x;)\
Lt L0 0D) — yununGa,0,0,0.)- gg )

3.6.4 Partial Derivatives of f for (=1
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(173)

(174)

(175)

(176)
(177)

(178)

(179)

(180)

(181)
(182)

(183)

Fourier series don’t converge well near discontinuities. The better (and faster) way to
determine partial derivatives of f for ( = 1 is hence a treatment in terms of linear

functions. Assume uy = ug(u;) = — -

uy
For m < pp << 2T _
— — wug—ul’

fA('ruul> = ur,

(184)
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" = Uy, (185)
of(x.w) _ (186)
Uy
For u“” <z <m,
fla,u) =z - (x =), (187)
ofw,w) _, (188)
x
8f(x,u1) x—T
=T (189)
For —nm <x < u;‘i’{d — T,
f(:t,ul) = —uy - (x+7), (190)
af(l’7U1) — _U17 (191)
x
Of@w) (g, (192)
Uy
For % —nm<z<0,
f(x,ul) = —UsT, (193)
Of(w,u1) _ o, (194)
x
af(xvul) _ ﬁ
= (195)

For x ¢ [—m; 7], use f(x + 2zm,up) = f(a:,ul), for integers z € Z.

3.7 For Completeness, the Remaining Partial Derivatives

Partial derivatives of this subsection behave instable in many cases. This applies especially
to difference quotients, when used as an approximation for Hessian matrices.

3.7.1 Partial Derivatives of f for ¢ #1
Write equation (111) as

~

fu(uy,us, ¢) = ul’u2 i (ag(uy, up) - cos(kx) 4 by(ur, up) - sin(kx))C™%,  (196)

to emphasize the dependence of f on uy, Uy, and (.
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Derive with respect to (:

afx(ula Uz, g)

197
x (107
0 {M + 5202 (ax(uy, ug) - cos(kx) + by (uy, ug) - sin(k::v))(’_k} (198)
— %
= Z ar(uy, ug) - cos(kx) + by (uy, up) - sin(kx)) k¢ * 1. (199)
Deriving with respect to u;
3]2(“1#%()
200
(9u1 ( )
9, [W + 302 (ar(uy, ug) - cos(kx) + by (uy, ug) - sin(kx)){‘k}
1
1 Oap(uy,uz) X [ Oag(ug, us) Obi(uy,uz) . k
- - 0L T P2) | cos(ka) + —2 2 g (k 202
5 o +k§::1 B, cos(kx) + 0w, sin(kx) | (7%, (202)
and the same way with respect to wus
afx(uh Ug, C)
203
0 (203)
1 Oag(uy,ug) & [ Oak(uq,us) Obg(uy,ug) . &
- —_— k ——=" .¢in(k 204
5 0w + ;;1 0 cos(kx) + au, sin(kx) | ¢, (204)
requires calculation of 8ak((97;11’u2), ab’“gﬁl’u?), 8%&12 2) and 2eluiuz) 87;12”2).

3.7.2 Partial Derivatives of C}, and S;,

The partial derivatives of C} and Sy will be needed to calculate the partial derivatives
of a; and bg. First the four partial derivatives of C,. Case k£ = 0 needs to be treated
separately:

2 2
aCO(u, v, thQ) 042 + vry — uwry VI
ou = o (205)
2 2
=373 (206)
2 _ 2
— ) 5 l‘l. (207>
aco(ua v, X1, x?) 3"—% + VL9 — Lx% — V1
BB = — S (208)

= T — I71. (209)
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0Co(u, v, x1, T2) 3%3 + vz — uTx% v
= 21
8:61 axl ( O)
= —uz — V. (211)
OCh(u,v,wr,ma) _ O +vmy — M —
= 212
8x2 axQ ( )
Now let k£ > 1.
OCk(u,v,wy,m) O [*5 sin(kay)] LY [ cos(kas) (214)
ou B ou ou
ofepsinthay)] _ofgoosthn)]
ou ou
Ty . 1
= ?2 sin(kzy) + = cos(kxs) (216)
. 1
—?1 sin(kxq) — yE cos(kxy). (217)
OCk(u, v,y my) O[5 sin(kay)| LY [ cos(kaa) (218)
ov N ov v
ofepsinthay)] _ofgoosthe)]
v ov
1. L,
= E Sln(k’fL'Q) — % Sln(kxl). (220)
OCk(u,v,1,w5) O [*5sin(kay)| L [ cos(kaa) (221)
81’1 N 8:61 3:1:1
O[22 sin(kay)| 9 | cos(han)] (222)
8x1 axl
- _% sin(kx1) — (uwy + v) cos(kay) + %Sin(k%) (223)
= —(uxy +v)cos(kxy). (224)
The same way
OCk(u,v,1,23) _ (uzs + v) cos(kzs). (225)
8332
The four partial derivatives of S, k > 1:
0 |42t cos(ka 0 |5 sin(kx
OSk(u, v, 1,29) [ k ( 2)} + [’f ( 2)] (226)

ou ou ou
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+ k

0 [M cos(kxl)]

0 {% sin(k’xl)}

ou

= —% cos(kxg) +

+% cos(kxy) —

8Sk(u,v,x1,x2) o

0 | M2+ cos (k)]

B ou

1
5 sin(kxs)

1
ﬁ Sin(kxl).

N 0 {% sin(k’xg)}

ov ov

_|_

: ov
) [W}jv cos(km)} 9 {% Sin(kxl)}
ov - v

1 1
= 7 cos(kxy) + % cos(kxy).

DS (u,v, 11, 15) 0 |12 cos(ka)|

N 0 [% sin(kxg)}

8.171 (9.201 03:1
9, {“x}j” cos(k::vl)} 0 {k% sin(k‘xl)}
+ (9271 B 6;1:1
u . u
=z cos(kxy) — (uzy 4+ v) sin(kzy) — z cos(kxq)

= —(umq +v)sin(kxy).

Again the same way
ISk (u, v, 71, 79)

81’2

3.7.3 Partial Derivatives of a; and by

= (uzy + v) sin(kzy).

25

(227)
(228)

(229)

(230)

(231)

(232)

(233)

(234)

(235)
(236)

(237)

With the formulas for a; and b, of 3.3.4, the partial derivatives of a; and b, can be

calculated:
Oay(uq, us) ICk(—ur, —uymr, =, 217-)
8“1 aul
aCk( u27 ) uuiTqu 70)
+ 2 1
3u1
8C’k(u1, O O, ugzzl)
8u1
i 8Ck (u27 —U2T, u:i::l ) ﬂ-) ) l
Ouq 7w’
Obi.(uq, us) OSk(—ur, —uym, —m, S0
8u1 E)ul

(238)
(239)
(240)

(241)

(242)
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aSk( Uy, 7ugi7;170)

243
+ . (243)
0Sk(uq,0,0, 27-)
2= 244
+ 0 (244)
aSk(u27_u27T7 o 77T> 1
w2 24
' o ) L (245)
80 - y )y 7£
Oag(uy, us) _ o(—uy, —uym, —7 u2_u1) (246)
8u2 8u2
OCk(—ug, 0, 27—, 0)
Uz —u1 247
+ s (247)
0C%(uq,0,0, o )
248
+ s (248)
OCk(ug, —ugm, 27— 1)\ 1
w2 2 249
+ Fun ) = (249)
and
8bk(u1, Ug) . aSk(—Ul, T, =T, ﬁ) (250)
8uQ a 81@
OSk(—ug,0, 27— 0)
uz—n 251
+ s (251)
8Sk(U1,0,0, S )
uz 252
+ s (252)
OSk(ug, —ugm, 227 )\ 1
TR 2
' o ) ! (253)
With chain rules of the structure
ICk (ulur, ug), v(u, ug), o1 (ur, ug), v2(u, up) (254)
3ui
~ 0Ck(uluy, u), v(ug, uz), v1(ur, uz), v2(u1, ug)) ' Ou(uy, ug) (255)
o Ou(uy, us) ou;
N OCk(u(uy, ug),v(uy, ug), x1(uy, ug), xo(ur, us)) ‘ Ov(uy, uz) (256)
Ov(uy, us) ou,
N IC(u(ur, up), v(uy, us), w1 (ur, us), w2(ur, up))  Ix1(us, ua) (257)
83:'1 (ul, UQ) aul
N OCk (u(us, uz), v(u1, us), o1 (w1, ug), T2 (ur, us)) 3172(%7“2)’ (258)

0% (u1, uz) ou;

1 = 1,2, same for S, the calculatlon of ay and by, is reduced to the respective calculations
of Ou(ui,uz)  Ov(ui,uz)  Ozi(ui,uz) and Oxa(u1,u2)
ou; ) ou; ) Oou; Ou; :
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The following versions of potentially non-constant w(uy, us), v(uy, us), x1(u, us), and
xo(uy, ug) ocecur: uy, —uy, —UIT, Us, —Us, —UsT, —2T— and 42—

. . ) ug—u’ ug—uy
Non-zero derivatives:
-
8u,~
O(—u;)
- -,
8UZ’
O(—u;m)
= —T,
0ui
fori=1,2.
U
upg—ur _ T 1 U™ _ U T
8u1 U — Uy (’LLQ - U1)2 <UQ — u1)27
U
us—uUl U T
aul (UQ — U1)27
uT
us—ui Ul
- ’
(9u2 <U2 — U1>2
and
U
o T U T . wT
Ous us —uy  (ug — up)? (ug — uq)?
When defining
1
Ug 1= ——,
Uy

the following non-zero cases need to be considered: uy, —uy, —uqm, —i, u%, ull,

Uy —uim
—L —u 1+u¥

and

u " &

—L w1 4ud

ul

The non-zero derivatives, besides those already calculated:

wl 1
ou,  u?
1
wo_ 1
Ouq u?
olz] _ =«
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8;1:71;% 2w (L+ud) +udm - (2u) - 2w = 2uin 4+ 2uin 2uw
dup (14 uf)? B (1+uf)? (1+u)?
and -
am 2wy
Ouy (1 +uf)?
More explicitely, for the version us = ug(uy) := —u%, applying the chain rule to
day,(u1, uz(uy)) _ OC (_ul’ — T, T “2(311;_“1) (259)
8u1 8ul
8Ck (-Ug(Ul) 0 W 0)
> g (ug)—u?
260
+ S (260)
aCk (ul 0.0 ug(u1)m )
y Yy Yy ’U«2('U«1)*ul
261
+ s (261)
IC, (UQ(U1)7 —ug(ur), ujffj;l’;l ) 7T> 1
+ - (262)
(3u1 ™
(263)
results in
dag(u1, ua(u1)) _ 1, _aCk (_ul’ —hm T “2(511;_“1) (264)
ouy T 0 (—uy)
B 6Ck (—’lﬂ, —um, —m, uz(:ﬁ)ﬂ—ul) o (265)
0 (—uym)
B 0C} (—ul, —UyT, —, m(fﬁ;lul) - 2muy (266)
e (14 u?)?
9Cy, (—U2(U1)707 ﬁao) 1
_ C— (267)
9 (—uz(u1)) uy
Gk (—uaw) 0 g 0)  2mu (268)
UL (1 +u2>2
ug(u1)—u 1
OC; (ur,0,0, 20l )
7 ug(ug)—ug
269
T - (269)
uz(u1)m
B aCk; (U/l, 0, 0, ug(u1)—u1> . 27TU1 (270)
§—uzlu)m (1 + u?)?

uz(u1)—u1

90 sl ) g ) -
Oug(uy) u?
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OC (s (), —ua(un), 7227 )

) ug(u1)—u1’ T
- — 272
8 (—uwa(un) 3 272)
0C% (UQ(M); _UZ(UI>7T7 %7 7T> 2muq 973
B o ug(u1)m ' (1—|—U%)2 ’ ( )
uz(u1)—u1

Replace C} by Sk to obtain the formula for abgl(:l) = ab’f(“é’;‘f(“l))

3.8 Application to EFB03

First tests approximating EFB03 data by functions of the h family, with ¢ := 1, and
up = 1, showed a significant improvement relative to approximations by Gauss functions.

Additional optimizing of u; resulted in further improvement. This is quantified in
the tables of appendix B. While wu; is close to 1.0 on the left of the image, it indicates
increasing skewness towards the right side of EFB03 with values for u; between about 1.2
and about 1.45. The root mean square error for the approximated time series is below
2% relative to the peak height a for each tested vertical EFB03 stripe of width 100 pixels.
(The time series has been a result of linear regression of the horizontal substripe grey
values of EFB03, as described in "Some Empirical Approximations of the Stray Light in
Junocam Image EFB03, Part I7).

The parameters o and [ indicating kurtosis, show a considerable variability, as well.
This variability doesn’t appear to be random. The parameter 3 decreases overall from left
to right. The parameter a appears to increase from left to right, less distinctly, however.

With w; diverging from 1.0 to the right side of EFB03, the parameter ( is expected
to get an increasing meaning. It needs a careful treatment due to its computationally
challenging definition by a Fourier series.
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4 A Family of Generalized Gauss Functions

4.1 First Generalization Step
4.1.1 The Function

The formula ,
Gopo(r)=0a- e () ,

defining the Gauss functions, can be re-written as

Naprap(@) = a- P15 (274)

with « =2 and § = —%.
When investigating the other parameters of 7, the notation

nela, 0,0, 8) = a- 1558 (275)

may be more suggestive.

4.1.2 Partial Derivatives

For the partial derivatives with respect to x, 4, and o, it’s convenient to define a simplified
version of n by

Dpap(z) i=a- . (276)
Applying the chain rule to equation (276) returns
V() = Vaap(x) - af - |2*7" - sgn(x). (277)
Write 7 in terms of ¥ as
T — p
na7u,a,a,ﬁ(l’) - nx(a7 w, o, &, ﬁ) = ﬁa,a,ﬁ < o ) . (278)

Applying the chain rule to equation (278) then returns

r—p\ 1
Morao®) = Vs () - (279)
and applying the chain rule to equation (275) returns
Ona(a, p, 0,0, 8) g [amu|”
- = 280
da c ’ (280)
— 1
Ons(a, p, 0,0, 3) J s (rzf u) , (_) (281)
o o o o
ne(a, p, o, 3) T — T — i
) ) Y ) — ,19/ ( > . (_ ) ’ 282
do .8 o o2 (282)
a x\Wy My, Uy &y - @
Oa o
and 5 .
7790(617 g,ﬁo-’ O{, ﬁ) — nx(CL?,LL,O" a7ﬁ) . T ; lj’ (284)
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4.1.3 Dependence of parameters

Since
X — @ 5 «@
g [H = e (285)
o |o|
= Bl —pl®, (286)
with 5
= 2
61 |O_|aa ( 87)

the parameters ¢ and 3 depend on each other. Hence one of these two parameters can be
chosen as a constant, when fitting the parameters of n to a given set of data.

5 Future Research

First attempts to describe the horizontal variability of Gauss functions approximating the
EFBO03 stray light didn’t reveal an obvious canonical approach. This attempt is worth
to be repeated with the h family of functions. The first goal is to find one or more 2-
dimensional functions approximating the EFB03 stray light, with as few parameters as
reasonably possible. The next goal is a stepwise extension of this 2d-function to a function
with predictive power for any stray light detected by Junocam. Those functions might be
related to convolutions.

Part T of this small series of articles intended to include a two-dimensional approx-
imation of EFB03 within part II. But due to the complexity of the topic, it appears
appropriate to treat it in a separate article.

Other obvious questions are about the role of the parameter ( for improving the
approximations, and verification (or falsification) of the conjecture, that the h family
of functions is better-suited to describe EFB03 than the family of generalized Gauss
functions.

The methods and functions described in this article arent’t entirely new. But the
degree and extent of similarity to related work isn’t quite clear. Hence embedding the
stray light analysis of Junocam into related fields of research and results, together with
the according bibliography, would be desirable.
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A Parameters of Periodic Gauss for EFB03

The table headlines use G, i, and o without the tilde, but actually refer to the parameters
of the periodic version of the Gauss functions. The meaning of the function F' is that
of the mean brightness functions at the lower and upper bound of the substripes, as in
part I.
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A.1 Substripe 0
Substripe 0

Approximations axl,mg,O,IG(Hzl,mg,O,ly le,x2,0,1> of le,zg,(],l
and gy 25.02G (Hay 22,02, Oy 29,02) Of Fiy 2502 by sinus-modified Gauss functions

X T Qg ,20,0,1 My 20,01 | Oxy,22,0,1 Qg ,29,0,2 My ,20,0,2 | Oxy,22,0,2

24 | 124 | 18.012032 | 20.803717 | 3.912027 | 18.522949 | 21.369310 | 3.832799

74| 174 | 16.736149 | 20.984796 | 4.037648 | 17.258174 | 21.438157 | 3.904028
124 | 224 | 15.302618 | 21.119780 | 4.128121 | 15.833248 | 21.495926 | 3.984376
174 | 274 | 13.981488 | 21.227522 | 4.279986 | 14.665566 | 21.527415 | 4.140623
224 | 324 | 13.154696 | 21.283574 | 4.393807 | 14.004696 | 21.523294 | 4.296003
274 | 374 | 12.978897 | 21.290817 | 4.484056 | 13.911148 | 21.510270 | 4.386931
324 | 424 | 13.218515 | 21.285711 | 4.556601 | 14.283032 | 21.495290 | 4.443743
374 | 474 | 13.587911 | 21.292598 | 4.562738 | 14.643586 | 21.504662 | 4.447107
424 | 524 | 13.477408 | 21.337696 | 4.569187 | 14.324982 | 21.529712 | 4.407565
474 | 574 | 12.980298 | 21.424841 | 4.526092 | 13.577943 | 21.597304 | 4.395125
524 | 624 | 12.704641 | 21.535628 | 4.492881 | 13.195847 | 21.619522 | 4.414057
574 | 674 | 12.906374 | 21.602578 | 4.470545 | 13.445564 | 21.652710 | 4.414211
624 | 724 | 13.423945 | 21.643810 | 4.430454 | 14.078265 | 21.683934 | 4.380224
674 | 774 | 14.077516 | 21.668463 | 4.393974 | 14.889062 | 21.694970 | 4.336800
724 | 824 | 14.848972 | 21.705736 | 4.358432 | 15.749921 | 21.711467 | 4.288558
774 | 874 | 15.700220 | 21.749565 | 4.322581 | 16.880769 | 21.745861 | 4.233922
824 | 924 | 16.554592 | 21.807232 | 4.282880 | 18.172061 | 21.764235 | 4.182314
874 | 974 | 17.595246 | 21.850486 | 4.237727 | 19.397391 | 21.806787 | 4.111143
924 | 1024 | 19.167153 | 21.914582 | 4.186127 | 21.360412 | 21.857223 | 3.991434
974 | 1074 | 21.820107 | 22.081207 | 4.078018 | 24.428187 | 21.941115 | 3.838174
Approximations axl’xQ,[),lG(H’CCl,CCQ,O,la le,m,o,l) of Fxl,xz,O,l
and Gy, 25.02G Py 29,025 Ty 29.02) Of Fiy 2502 by sinus-modified Gauss functions

Ty ) Ay ,29,0,1 My 25,0,1 Oz1,29,0,1 Ay ,25,0,2 My ,20,0,2 O11,22,0,2

1024 | 1124 | 25.732450 | 22.125535 | 3.968854 | 28.281724 | 21.984038 | 3.703104
1074 | 1174 | 29.512560 | 22.165582 | 3.807502 | 32.088212 | 21.983388 | 3.655412
1124 | 1224 | 31.771919 | 22.256012 | 3.640315 | 34.207328 | 21.991162 | 3.622183
1174 | 1274 | 33.232583 | 22.264194 | 3.580471 | 35.078944 | 22.009196 | 3.578780
1224 | 1324 | 34.801074 | 22.220986 | 3.590220 | 36.251529 | 22.029738 | 3.623948
1274 | 1374 | 38.380201 | 22.284858 | 3.544014 | 39.850070 | 22.060169 | 3.551063
1324 | 1424 | 46.832039 | 22.390863 | 3.270490 | 49.207019 | 22.114408 | 3.235031
1374 | 1474 | 65.304820 | 22.770319 | 2.902732 | 68.971450 | 22.259000 | 2.864453
1424 | 1524 | 85.830342 | 22.952959 | 2.919524 | 94.143121 | 22.351086 | 2.889916
1474 | 1574 | 82.075037 | 22.838715 | 3.073998 | 90.991996 | 22.339283 | 3.002448
1524 | 1624 | 83.984837 | 22.723318 | 2.802277 | 82.585559 | 22.216996 | 2.903288
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A.2 Substripe 2

A PARAMETERS OF PERIODIC GAUSS FOR EFB03

Approximations arl,r2,2,1G(M1171272,17 Uftl,sz,?,l) of Foy w21
and gy 022G (flay 29,22, Oy 29,2.2) Of Fiy 2500 by sinus-modified Gauss functions

x1 X2 Ay ,20,2,1 Hzy,x021 | Oz 20,21 Agq,29,2,2 Hzy,202,2 | Oxy,20,2,2

24 | 124 | 16.366029 | 21.390684 | 3.890258 | 19.102794 | 21.853796 | 3.489733

74| 174 | 15.405113 | 21.464990 | 3.917070 | 18.016875 | 21.861557 | 3.534811
124 224 | 14.198107 | 21.495415 | 4.024748 | 16.295627 | 21.850420 | 3.618297
174 | 274 | 13.237066 | 21.525281 | 4.152701 | 14.675980 | 21.789354 | 3.753119
224 324 | 12.729635 | 21.526195 | 4.265416 | 14.116149 | 21.791238 | 3.852790
274 | 374 | 12.623034 | 21.514007 | 4.349095 | 14.469065 | 21.798924 | 3.882396
324 424 | 12.830524 | 21.504716 | 4.425052 | 14.747377 | 21.797471 | 3.936151
374 | 474 | 13.065851 | 21.502285 | 4.450917 | 14.661902 | 21.821627 | 3.986507
424 | 524 | 12.837436 | 21.533950 | 4.395533 | 14.227464 | 21.819894 | 3.977264
474 | 574 | 12.363589 | 21.589101 | 4.335253 | 13.267214 | 21.796831 | 3.981223
524 | 624 | 12.108023 | 21.622343 | 4.339392 | 12.425935 | 21.777881 | 4.057794
574 | 674 | 12.195063 | 21.632595 | 4.373476 | 12.111812 | 21.748449 | 4.138050
624 724 | 12.710425 | 21.651940 | 4.366376 | 12.133633 | 21.734515 | 4.228459
674 | 774 | 13.376158 | 21.687915 | 4.361316 | 12.538438 | 21.722438 | 4.240178
724 824 | 14.084874 | 21.708382 | 4.336062 | 13.129192 | 21.712330 | 4.199112
774 | 874 | 15.074804 | 21.733752 | 4.285080 | 13.861004 | 21.712463 | 4.190113
824 | 924 | 16.222312 | 21.740654 | 4.227856 | 14.658317 | 21.737941 | 4.170401
874 | 974 | 17.314721 | 21.737865 | 4.159135 | 15.551418 | 21.743366 | 4.102995
924 | 1024 | 18.938443 | 21.791930 | 4.044618 | 16.930185 | 21.760425 | 4.004044
974 | 1074 | 21.634377 | 21.858856 | 3.886961 | 19.050550 | 21.754579 | 3.866472

Approximations a,x17x27271G(Hg;17a:272,17 le,x2,2,1) of F50175527271
and Gy, 229G (Mg 29,2.25 Ty 29.2.2) Of Fiy 2522 by sinus-modified Gauss functions

€

T2

a’Il,IQ,Q,l

/”'Lxl7'7:27271

O—xl7x27271

a'xlvx27272

/”'Lxl7'7:27272

O—xl7x27272

1024
1074
1124
1174
1224

1124
1174
1224
1274
1324

25.022454
28.703088
31.346401
32.573792
33.720552

21.920469
21.932157
21.962661
21.973831
21.981495

3.724092
3.624126
3.516069
3.449535
3.462668

21.878863
25.566070
29.411073
30.975884
30.486734

21.754252
21.758577
21.772964
21.792657
21.827116

3.710234
3.501512
3.277719
3.202513
3.245090

1274
1324
1374
1424
1474

1374
1424
1474
1524
1574

36.628545
44.329746
60.051436
81.726330
79.558103

22.026617
22.084543
22.169641
22.234044
22.239255

3.426666
3.204653
2.945431
2.959232
3.059057

31.472417
36.080118
45.595380
56.446338
27.479419

21.862977
21.889208
21.899292
21.900635
21.910762

3.193989
3.039781
2.939259
3.112125
3.122665

1524

1624

72.684206

22.181977

2.958535

59.134611

21.927101

2.875787
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B Parameters of Power-Law Function h for EFB03

The tables of this section refer to parameters of the function h in the sense of equa-
tion (141). The parameter g is chosen as the constant ¢ := 79.0. The column RMS lists
the absolute root square error sum of the fitted approximation with respect to the data.
The column 4t lists the number of iteration steps needed to find the fit; it is provided as
an informal hint to the computational complexity, since instead of the square error sum,
the optimization was started with an optimization of a high power (exponents between
64 and 128) of the square error sum, to extend the zone of convergence. The Newton
method converges much slower for this type of functions. The exponent was gradually
reduced, whenever the changes of the error function became small, or when some prede-
fined maximum number of iterations was exceeded. Only the last optimization steps were
applied to the initial square error sum, where the Newton method converges fast.

B.1 Substripe 0, Lower Bound, u; := 1.0, ( := 1.0

Approximations Ay (u1,u2,¢,a,0,B,0,\) of Fy 25,01, with 2 = 1 + 100,
by power-law functions with ug := i
T a « B A o ul ¢ RMS it
24 | 17.91180923 | 1.95686524 | 3.16230256 | 20.82305628 | 9.48909941 | 1.0 | 1.0 | 0.160465 | 458
74 | 16.73111052 | 1.93756798 | 3.10948232 | 20.94685755 | 9.68160454 | 1.0 | 1.0 | 0.164405 | 509
124 | 15.24481188 | 2.01884716 | 2.88265254 | 21.05364905 | 9.29721531 | 1.0 | 1.0 | 0.182035 | 332
174 | 13.84452614 | 2.21173673 | 2.27060299 | 21.15322358 | 8.04268093 | 1.0 | 1.0 | 0.196792 | 328
224 | 12.98634666 | 2.42578068 | 1.79840727 | 21.21767816 | 7.08468441 1.0 | 1.0 | 0.208243 | 326
274 | 12.81806385 | 2.56663637 | 1.55008259 | 21.24337775 | 6.62995224 | 1.0 | 1.0 | 0.222104 | 307
324 | 13.10413719 | 2.54182025 | 1.49529208 | 21.25328757 | 6.61233756 | 1.0 | 1.0 | 0.248739 | 265
374 | 13.53889187 | 2.36315639 | 1.62153306 | 21.26181880 | 7.01672138 | 1.0 | 1.0 | 0.285935 | 209
424 | 13.45776112 | 2.34850856 | 1.56236614 | 21.29924956 | 6.88616796 | 1.0 | 1.0 | 0.305290 | 183
474 | 12.84724451 2.53213489 1.35025631 | 21.39745325 | 6.26573480 | 1.0 | 1.0 | 0.297223 | 194
524 | 12.52102259 | 2.68745102 | 1.23663621 | 21.51866987 | 5.91910213 | 1.0 | 1.0 | 0.295331 206
574 | 12.69654323 | 2.73245641 | 1.18673188 | 21.59569969 | 5.77105868 | 1.0 | 1.0 | 0.307993 | 200
624 | 13.20075002 | 2.67733466 | 1.20194612 | 21.63804138 | 5.76815535 | 1.0 | 1.0 | 0.323207 | 183
674 | 13.86554408 | 2.57494666 | 1.25848852 | 21.66484762 | 5.87147142 | 1.0 | 1.0 | 0.339982 | 167
724 | 14.63894200 | 2.49005234 | 1.30784211 | 21.70370029 | 5.96187452 | 1.0 | 1.0 | 0.362104 | 151
774 | 15.50175520 | 2.45871735 | 1.31792270 | 21.75132437 | 5.93556687 | 1.0 | 1.0 | 0.385465 | 138
824 | 16.36116108 | 2.44706412 | 1.31463914 | 21.79909820 | 5.86997512 | 1.0 | 1.0 | 0.409916 | 127
874 | 17.38665470 | 2.43721738 | 1.30296115 | 21.85443263 | 5.78409607 | 1.0 | 1.0 | 0.446077 | 114
924 | 19.04699805 | 2.39389139 | 1.30882684 | 21.96227058 | 5.70321839 | 1.0 | 1.0 | 0.495876 97
974 | 21.71639742 | 2.37830828 | 1.19011651 | 22.11522986 | 5.24999505 | 1.0 | 1.0 | 0.563573 67
1024 | 25.53809588 | 2.38629788 | 1.05765923 | 22.20474516 | 4.76183935 | 1.0 | 1.0 | 0.709674 38
1074 | 29.24328805 | 2.36377429 | 1.07031177 | 22.25680402 | 4.62090706 | 1.0 | 1.0 | 0.867442 36
1124 | 31.47283308 | 2.52878705 | 0.98268512 | 22.31734581 | 4.21515763 | 1.0 | 1.0 | 0.912775 41
1174 | 32.86039460 | 2.92503049 | 0.80316972 | 22.32984495 | 3.74169460 | 1.0 | 1.0 | 0.914671 52
1224 | 34.32910101 | 3.38047917 | 0.67656762 | 22.30533150 | 3.52542116 | 1.0 | 1.0 | 0.924009 78
1274 | 37.19353288 | 3.58107355 | 0.64527010 | 22.32157109 | 3.46205596 | 1.0 | 1.0 | 0.977294 98
1324 | 44.79752193 | 3.39783030 | 0.69320028 | 22.49217956 | 3.30212228 | 1.0 | 1.0 | 1.272426 80
1374 | 62.39319734 | 3.51790712 | 0.67214093 | 22.86559440 | 2.90482364 | 1.0 | 1.0 | 2.002276 41
1424 | 80.93464054 | 3.92267251 | 0.60748488 | 23.05715460 | 2.84990105 | 1.0 | 1.0 | 2.607743 51
1474 | 79.05187650 | 3.55030417 | 0.69830909 | 22.92079268 | 3.08245922 | 1.0 | 1.0 | 2.377627 55
1524 | 80.16369760 | 2.77964210 | 0.97718688 | 22.76288374 | 3.28519021 | 1.0 | 1.0 | 2.051840 46
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B.2 Substripe 0, Lower Bound, u; Optimized, ( := 1.0

Approximations ilz(u1,u2, Ca,a,B,0,\) of Fry 25,0,1, with 2 = 1 + 100,
by power-law functions with ug := 7711
T a « B A o u1l ¢ RMS it
24 | 17.96246578 | 1.92299860 | 3.38523052 | 21.07252572 | 9.95201545 | 1.06046466 | 1.0 | 0.118030 | 550
74 | 16.74557610 | 1.92092265 | 3.22642134 | 21.13344653 | 9.94209124 | 1.04395826 | 1.0 | 0.146125 | 696
124 | 15.24372546 | 2.00763823 | 2.96234503 | 21.26937405 | 9.47607941 | 1.04912989 | 1.0 | 0.165248 | 391
174 | 13.83396552 | 2.20093923 | 2.32721908 | 21.47587209 | 8.16997797 | 1.07109050 | 1.0 | 0.171090 | 383
224 | 1297989541 | 2.40281065 | 1.86298851 | 21.65446111 | 7.22681577 | 1.09418114 | 1.0 | 0.172215 | 386
274 | 12.82213153 | 2.52190941 | 1.63455233 | 21.77432651 | 6.81397929 | 1.11307102 | 1.0 | 0.175197 | 382
324 | 13.13550164 | 2.45279501 | 1.65039460 | 21.88117693 | 6.96298382 | 1.13431444 | 1.0 | 0.184192 | 359
374 | 13.58971949 | 2.25226168 | 1.87292956 | 21.94327111 | 7.62587581 | 1.14806909 | 1.0 | 0.208581 | 303
424 | 13.51459559 | 2.22292539 | 1.83638797 | 22.00174221 | 7.57142677 | 1.15382973 | 1.0 | 0.228274 | 268
474 | 12.89402136 | 2.40183143 | 1.54932238 | 22.13199720 | 6.73821666 | 1.16113851 | 1.0 | 0.223315 | 277
524 | 12.56954386 | 2.54330416 | 1.41085787 | 22.31836316 | 6.30116000 | 1.17687163 | 1.0 | 0.214360 | 300
574 | 12.75608081 | 2.56974208 | 1.36604177 | 22.44129437 | 6.15314816 | 1.18890655 | 1.0 | 0.217747 | 302
624 | 13.26567576 | 2.51562547 | 1.38786872 | 22.47977413 | 6.16901398 | 1.19030952 | 1.0 | 0.227792 | 285
674 | 13.93613877 | 2.42023946 | 1.45819355 | 22.47774938 | 6.31648033 | 1.18582266 | 1.0 | 0.242322 | 265
724 | 14.72483375 | 2.32943223 | 1.53758437 | 22.50602951 | 6.48891797 | 1.18582863 | 1.0 | 0.257456 | 249
774 | 15.60201045 | 2.29187717 | 1.56184929 | 22.55775482 | 6.49605708 | 1.18952912 | 1.0 | 0.269858 | 241
824 | 16.47320248 | 2.27659469 | 1.56341831 | 22.62617256 | 6.43359654 | 1.19750795 | 1.0 | 0.278004 | 242
874 | 17.51658572 | 2.25880485 | 1.56266500 | 22.72711970 | 6.36103773 | 1.21263059 | 1.0 | 0.286806 | 250
924 | 19.22480818 | 2.19096433 | 1.61679105 | 22.86033834 | 6.39097636 | 1.22565313 | 1.0 | 0.298664 | 272
974 | 21.96756603 | 2.14217376 | 1.50473705 | 23.01332235 | 5.95935692 | 1.23666726 | 1.0 | 0.307698 | 364
1024 | 25.92079556 | 2.08621501 1.40696820 | 23.15178098 | 5.55361554 | 1.26433675 | 1.0 | 0.357469 | 405
1074 | 29.76504607 | 2.02201911 | 1.49693573 | 23.23600701 | 5.56799488 | 1.28800259 | 1.0 | 0.440120 | 348
1124 | 31.96814951 | 2.19620658 | 1.29269465 | 23.28544904 | 4.79894045 | 1.29600848 | 1.0 | 0.462308 | 364
1174 | 33.25421560 | 2.59228637 | 0.98227472 | 23.30793667 | 3.98766881 | 1.30279462 | 1.0 | 0.459575 | 423
1224 | 34.61035125 | 3.06738679 | 0.78139289 | 23.29764172 | 3.60975242 | 1.30213908 | 1.0 | 0.483892 | 435
1274 | 37.57638538 | 3.18856185 | 0.75987391 | 23.31075577 | 3.54789177 | 1.29998617 | 1.0 | 0.521697 | 437
1324 | 46.17857676 | 2.64571038 | 1.00255966 | 23.52872001 | 3.64008178 | 1.34803891 | 1.0 | 0.555103 | 524
1374 | 64.82698876 | 2.63917393 | 1.02801479 | 24.00114259 | 3.17486845 | 1.45492626 | 1.0 | 0.675289 | 191
1424 | 82.96906969 | 3.16704719 | 0.81384033 | 24.25674634 | 2.89449531 1.47341955 | 1.0 | 1.092960 | 167
1474 | 80.47572336 | 3.04301186 | 0.86780496 | 23.96289277 | 3.16329480 | 1.37847201 | 1.0 | 1.261321 | 139
1524 | 81.21077894 | 2.53323642 | 1.13057949 | 23.56559637 | 3.40519857 | 1.30582568 | 1.0 | 1.078308 | 133
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