IPB

Welcome Guest ( Log In | Register )

14 Pages V  « < 3 4 5 6 7 > »   
Reply to this topicStart new topic
Future Venus Missions
Phil Stooke
post Feb 22 2006, 01:34 PM
Post #61


Solar System Cartographer
****

Group: Members
Posts: 8146
Joined: 5-April 05
From: Canada
Member No.: 227



Replying to Bob about seeing Aristarchus with his new glasses:

Yes, but it's not Aristarchus the crater you're seeing, or the plateau, it's the Aristarchus ray system, which has much more contrast and is MUCH bigger. If you didn't know there was a crater in it, your observations would not tell you that.

Ditto Mars. Barnard, Mellish, Antoniadi - they were seeing spots and interpreting them as craters. Some were, merely because they had material of differing albedo on their floors. Some were not (e.g. Juventae Fons, Nix Olympica). They only saw spots.

Phil


--------------------
... because the Solar System ain't gonna map itself.
Go to the top of the page
 
+Quote Post
Guest_BruceMoomaw_*
post May 3 2006, 02:51 PM
Post #62





Guests






The presentations from the second VEXAG meeting have just arrived ( http://www.lpi.usra.edu/vexag/May2006/presentations.html ). In the one on the latest update of the Solar System Roadmap ( http://www.lpi.usra.edu/vexag/May2006/VEXAG_52006_ELLEN.pdf ), Ellen Stofan's group recommends that for the projected Flagship-class Venus Surface Explorer, an "air mobility platform with long traversing" is now "preferred over a surface rover" for Venus, logically enough. (Not only does it allow much longer traversing, but in the case of Venus it would also allow the vehicle to land, hastily take a look around and grab some samples for later digestion, and then take off again for the cooler upper atmosphere, thereby reducing its heat burden.)

Actually, though, the single most useful presentation from this VEXAG meeting may be Larry Esposito's summation of our current scientific knowledge of Venus ( http://www.lpi.usra.edu/vexag/May2006/Chap...ummaryVEXAG.pdf ).

Also see Emily's series of very useful blog entries on the goings-on at VEXAG ( http://planetary.org/blog/ ).
Go to the top of the page
 
+Quote Post
RNeuhaus
post May 3 2006, 04:01 PM
Post #63


Senior Member
****

Group: Members
Posts: 1636
Joined: 9-May 05
From: Lima, Peru
Member No.: 385



I feel that the last proposal from VEXAG is more sensate and doable. So, I hope they will have a good common sense to agree and stick these objectives and start to work together without much missing time and money.

Rodolfo
Go to the top of the page
 
+Quote Post
Guest_DonPMitchell_*
post May 4 2006, 08:33 PM
Post #64





Guests






Bob, what in particular did you want to know about the construction of the Vega aerostats?
Go to the top of the page
 
+Quote Post
Phil Stooke
post May 4 2006, 09:00 PM
Post #65


Solar System Cartographer
****

Group: Members
Posts: 8146
Joined: 5-April 05
From: Canada
Member No.: 227



Hi Don! That was quick!

Phil


--------------------
... because the Solar System ain't gonna map itself.
Go to the top of the page
 
+Quote Post
nprev
post May 5 2006, 12:40 AM
Post #66


Senior Member
****

Group: Admin
Posts: 8420
Joined: 8-December 05
From: Los Angeles
Member No.: 602



Mr. Esposito's presentation was indeed informative, Bruce; thanks for posting the link! smile.gif

2 By of oceans, huh...hmm. Although this is wild speculation, you have to wonder if maybe the advent of photosynthetic life on Earth was what saved us from becoming Venus' slightly bigger sibling in all respects.

Still, if oceans did persist that long, why wasn't more CO2 captured as limestone to prevent a runaway greenhouse? Did Venus all of a sudden become enormously more volcanically active than Earth ever was, causing that 'global resurfacing event' and a CO2 overload in the atmosphere that the oceans just couldn't process fast enough?

Lots of interesting and potentially quite significant contingency scenarios here... blink.gif


--------------------
A few will take this knowledge and use this power of a dream realized as a force for change, an impetus for further discovery to make less ancient dreams real.
Go to the top of the page
 
+Quote Post
Guest_DonPMitchell_*
post May 5 2006, 01:53 AM
Post #67





Guests






QUOTE (nprev @ May 4 2006, 05:40 PM) *
Mr. Esposito's presentation was indeed informative, Bruce; thanks for posting the link! smile.gif

2 By of oceans, huh...hmm. Although this is wild speculation, you have to wonder if maybe the advent of photosynthetic life on Earth was what saved us from becoming Venus' slightly bigger sibling in all respects.

Still, if oceans did persist that long, why wasn't more CO2 captured as limestone to prevent a runaway greenhouse? Did Venus all of a sudden become enormously more volcanically active than Earth ever was, causing that 'global resurfacing event' and a CO2 overload in the atmosphere that the oceans just couldn't process fast enough?

Lots of interesting and potentially quite significant contingency scenarios here... blink.gif


Venus has almost no magnetic field, so like Mars, hydrogen has been preferentially blasted away by solar wind. It lost almost all its water that way. Venus also seems to have a lot more atmosphere than Earth, even taking into account carbonates in the Earth's crust. Perhaps the late collision that created the Moon, blasted away most of the original volatiles.
Go to the top of the page
 
+Quote Post
Guest_BruceMoomaw_*
post May 6 2006, 09:22 AM
Post #68





Guests






QUOTE (nprev @ May 5 2006, 12:40 AM) *
Mr. Esposito's presentation was indeed informative, Bruce; thanks for posting the link! smile.gif

2 By of oceans, huh...hmm. Although this is wild speculation, you have to wonder if maybe the advent of photosynthetic life on Earth was what saved us from becoming Venus' slightly bigger sibling in all respects.

Still, if oceans did persist that long, why wasn't more CO2 captured as limestone to prevent a runaway greenhouse? Did Venus all of a sudden become enormously more volcanically active than Earth ever was, causing that 'global resurfacing event' and a CO2 overload in the atmosphere that the oceans just couldn't process fast enough?

Lots of interesting and potentially quite significant contingency scenarios here... blink.gif


The current concept of Venus is that it was never quite warm enough to develop a genuine "runaway greenhouse", in which the greenhouse effect from all the water vapor initially in its atmosphere raised its temperature by a greater enough margin to evaporate a really huge additional amount of water into the air...and so on in a self-amplifying positive feedback that took the form of a diverging series that didn't stop until ALL the planet's water was in the form of atmospheric steam, after which enough of it soared into the upper atmosphere for solar UV to get at it and break it down.

Instead, it appears that early Venus was instead a "moist greenhouse". That is, its initial warmth was greater than Earth's by a relatively modest margin, so that the amount of additional water that was evaporated into the air by that warmth was also fairly modest and so produced only a small additional greenhouse effect...and so on, in a positive-feedback effect that took the form of a converging rather than diverging series and thus finally leveled off at a certain point (as indeed our own water-vapor-generated self-amplifying greenhouse effect does after warming Earth by a total of about 33 deg C).

This stabilized level of early Venusian warmth, however, was still high enough to loft the planet's water vapor to altitudes high enough that solar UV could break it down with tremendously greater efficiency than was happening on Earth even before our photosynthetically created ozone layer appeared. Thus Venus was still stripped of ALL its water supply after (according to the majority view) a few hundred million years, at which point its "carbonate thermostat" -- which depends on the existence of liquid water -- also shut down. That is: after Venus' liquid water vanished, all the atmospheric CO2 which had been turned into carbonate minerals by that liquid water got eventually dragged back down by the planet's still-functioning plate tectonics into its semi-molten asthenosphere, where the carbonates were broken back down into CO2, which was then belched back into the atmosphere again by its volcanoes -- and this time that CO2 did not get turned back into carbonates again, so that the volcanoes eventually belched the planet's entire large CO2 supply into the air as a permanent super-thick atmosphere whose greenhouse effect (even without the assistance of water vapor) was strong enough to raise its temperature to its current roasting level and keep it there.

The planet's plate tectonics, according to this model, did shut down a billion years or so after the planet lost all its surface liquid water. This is because mixing liquid water with rock greatly lowers its melting point -- and so, without water to do this, the planet's asthenosphere solidified and permanently jammed up its plate-tectonic conveyor belt. Thus there may still be some carbonates sitting around on Venus' surface that were not taken underground and broken back down into CO2, although most of them were thus destroyed before the plate tectonics shut down completely. But at any rate, there's no evidence that the advent of photosynthetic life did anything to prevent Earth from turning into a Venus-type oven -- we were safe from that fate whether life had ever evolved on Earth or not, simply because we were far enough from the Sun for virtually all of our atmospheric water vapor to stay trapped in our dense lower atmosphere by the "cold trap" of our stratosphere and thus be safe from breakdown by solar UV.

David Grinspoon has recently proposed an interesting variant of this idea, based on the assumption that the calculations of James Kasting -- which are what have led to the rejection of the "runaway greenhouse" model of Venus and the acceptance of the "moist greenhouse" model instead -- are (by Kasting's own statement, an upper limit) which ignores the possible cooling effect of the dense high-albedo water clouds which the initial warm Venus would have had. Grinspoon thus thinks that early Venus may have been cool enough that it didn't lose all its liquid water (and thus start building up a super-dense CO2 atmosphere) for fully 2 or 3 billion years -- and therefore that its plate tectonics may not have shut down until only about 500 million years ago, so that the fact that Venus' surface (in the opinion of most geologists) suddenly started retaining impact craters at that point was not due to a separate "catastrophic resurfacing" event at that time, but just to the fact that, before then, plate tectonics had been erasing most of the planet's craters just the way it still does for Earth.

As Grinspoon points out, one astonishing side aspect of his revisionist view of Venusian history is that Venus would have had time to evolve not just microbial life (which Kasting's classic moist-greenhouse view might also allow), but photosynthetic and maybe even primitive multicellular life -- unlike Mars, Europa, or any other place in the Solar System. Ah, but is there any chance that any fossils of such Venusian life could survive to the present day in such a savage environment? Now you can see one reason why geologists are so interested (as the 2002 Decadal Survey said) in looking for any evidence at all of surviving sedimentary rocks, carbonates, or other aqueous minerals on Venus' surface.
Go to the top of the page
 
+Quote Post
PhilHorzempa
post May 7 2006, 04:39 AM
Post #69


Member
***

Group: Members
Posts: 167
Joined: 17-March 06
Member No.: 709



QUOTE (BruceMoomaw @ May 6 2006, 05:22 AM) *
As Grinspoon points out, one astonishing side aspect of his revisionist view of Venusian history is that Venus would have had time to evolve not just microbial life (which Kasting's classic moist-greenhouse view might also allow), but photosynthetic and maybe even primitive multicellular life -- unlike Mars, Europa, or any other place in the Solar System. Ah, but is there any chance that any fossils of such Venusian life could survive to the present day in such a savage environment? Now you can see one reason why geologists are so interested (as the 2002 Decadal Survey said) in looking for any evidence at all of surviving sedimentary rocks, carbonates, or other aqueous minerals on Venus' surface.



Thank you Bruce for reporting on Mr. Grinspoon's ideas. I think that he is one of
the more original and innovative members of the planetary science community.
I especially like David Grinspoon's proposal to include a manned mission to Venus,
as part of the VSE. As I recall, his plan calls for a crew to orbit Venus in a CEV and
use that vantage point to control a series of unmanned probes on the planet itself.


Another Phil
Go to the top of the page
 
+Quote Post
Bob Shaw
post May 7 2006, 03:51 PM
Post #70


Senior Member
****

Group: Members
Posts: 2488
Joined: 17-April 05
From: Glasgow, Scotland, UK
Member No.: 239



QUOTE (DonPMitchell @ May 4 2006, 09:33 PM) *
Bob, what in particular did you want to know about the construction of the Vega aerostats?


Don:

I've only seen (a very few) poor quality illustrations of their design - they've always struck me as being one of the more fascinating unsung planetary missions (probably well covered in French, though!). It's primarily the general layout, the deployment, and suchlike which I'd like to learn more about!

Bob Shaw


--------------------
Remember: Time Flies like the wind - but Fruit Flies like bananas!
Go to the top of the page
 
+Quote Post
Guest_DonPMitchell_*
post May 7 2006, 05:37 PM
Post #71





Guests






QUOTE (Bob Shaw @ May 7 2006, 08:51 AM) *
Don:

I've only seen (a very few) poor quality illustrations of their design - they've always struck me as being one of the more fascinating unsung planetary missions (probably well covered in French, though!). It's primarily the general layout, the deployment, and suchlike which I'd like to learn more about!

Bob Shaw


Blamont's book (in French) talks at length about this. The Vega balloon mission didn't have much to do with the French. In 1978, Blamont proposed an idea to send a much more complex mission to Venus that involved a big metal-foil balloon probe and an orbiter to relay its telemetry. As far as I know, nothing was ever built or designed in detail. The Mars sample-return mission was sucking the life out of their space budget though, so they sent the Venera-11/12 mission, and botched up some aspects of it. The head of NPO Lavochkin was fired after these probelms.

The Vega probes were designed at Lavochkin, based on a proposal by V. Linkin and others. It's made of teflon and nylon, and quite a bit smaller that what Blamont had proposed.

The idea of combining a Venus mission with a rendezvous with Halley's comet is from Vladimir Kurt. He and a mathematician worked out the celestial dynamics, and got it approved. Some kind of serious falling out occured between Kurt and Sagdeev though, so you don't see Kurt's name mentioned much, even though he was a primary mission planner for Vega.

Here is a diagram of the deployment:

[attachment=5484:attachment]

Here are a couple pretty good diagrams of the aerostat:

[attachment=5481:attachment]

[attachment=5480:attachment]
Go to the top of the page
 
+Quote Post
tty
post May 7 2006, 06:00 PM
Post #72


Member
***

Group: Members
Posts: 688
Joined: 20-April 05
From: Sweden
Member No.: 273



QUOTE (BruceMoomaw @ May 6 2006, 11:22 AM) *
David Grinspoon has recently proposed an interesting variant of this idea, based on the assumption that the calculations of James Kasting -- which are what have led to the rejection of the "runaway greenhouse" model of Venus and the acceptance of the "moist greenhouse" model instead -- are (by Kasting's own statement, an upper limit) which ignores the possible cooling effect of the dense high-albedo water clouds which the initial warm Venus would have had. Grinspoon thus thinks that early Venus may have been cool enough that it didn't lose all its liquid water (and thus start building up a super-dense CO2 atmosphere) for fully 2 or 3 billion years -- and therefore that its plate tectonics may not have shut down until only about 500 million years ago, so that the fact that Venus' surface (in the opinion of most geologists) suddenly started retaining impact craters at that point was not due to a separate "catastrophic resurfacing" event at that time, but just to the fact that, before then, plate tectonics had been erasing most of the planet's craters just the way it still does for Earth.

As Grinspoon points out, one astonishing side aspect of his revisionist view of Venusian history is that Venus would have had time to evolve not just microbial life (which Kasting's classic moist-greenhouse view might also allow), but photosynthetic and maybe even primitive multicellular life -- unlike Mars, Europa, or any other place in the Solar System. Ah, but is there any chance that any fossils of such Venusian life could survive to the present day in such a savage environment? Now you can see one reason why geologists are so interested (as the 2002 Decadal Survey said) in looking for any evidence at all of surviving sedimentary rocks, carbonates, or other aqueous minerals on Venus' surface.


Plate tectonics don't renew the whole surface, only the deep ocean part. The continents (including the continental shelf) are too light to be pulled down in the subduction zones. If Venus once had plate tectonics the "continents" (highlands) should be more heavily cratered than the "oceans" (basins). Whether this also implies that fossils and carbonates should be preferentially sought for in the highland areas is uncertain. The last life would have been found in the deepest parts of the basins, but these may have been "reprocessed" before plate tectonics stopped (here on Earth the ocean bottoms are completely "reprocessed" after ca 200 million years).

Incidentally there is evidence that Earth also had a "moist hothouse", not once but three times and that it saved rather than extinguishing life here. In the Late Proterozoic (600-800 million years ago) Earth suffered a series of extreme glaciations when all, or almost all, oceans froze over and continents were glaciated even in near-equatorial areas. Such a "snowball Earth" is climatically stable since the high albedo reflects most solar radiation back into space. However volcanism continued and since the oceans were ice-covered and the continents frozen no CO2 could be absorbed, but rather kept accumulating for maybe 20-30 million years. Temperatures slowly rose until the ice finally started melting, the albedo went down, the ice melted faster etc in a runaway process that converted Earth from Super-Antarctica to Super-Tropics in just a few thousand years. In this extreme hot-wet environment chemical weathering became intense and CO2 was rapidly drawn down and vast amounts of carbonates were deposited right on top of glacial deposits - a most unusual juxtaposition.

As for whether fossils could survive such extreme conditions, the answer is probably yes. Fossils can occasionally be recognizable in rocks that have been heated to similar temperatures on Earth. However here such heating is invariably linked to great depth and extreme pressures and also not continued for such a long period (500 mya), so it is difficult to make comparisons.


tty
Go to the top of the page
 
+Quote Post
Bob Shaw
post May 7 2006, 06:02 PM
Post #73


Senior Member
****

Group: Members
Posts: 2488
Joined: 17-April 05
From: Glasgow, Scotland, UK
Member No.: 239



Don:

Thanks!

I hadn't previously realised that the entry/deployment sequence was quite so complex - I'd presumed (for no good reason that I can think of) that the lander simply had a bolt-on atttachment which was the ballooon and whatever bits were required to set it going! It's really impressive that a clockwork spacecraft could do so much and so well.

Bob Shaw


--------------------
Remember: Time Flies like the wind - but Fruit Flies like bananas!
Go to the top of the page
 
+Quote Post
Guest_DonPMitchell_*
post May 7 2006, 06:10 PM
Post #74





Guests






QUOTE (Bob Shaw @ May 7 2006, 11:02 AM) *
Don:

Thanks!

I hadn't previously realised that the entry/deployment sequence was quite so complex - I'd presumed (for no good reason that I can think of) that the lander simply had a bolt-on atttachment which was the ballooon and whatever bits were required to set it going! It's really impressive that a clockwork spacecraft could do so much and so well.

Bob Shaw


Yeah, the balloon and helium bottles were stored on a ring-shaped unit that wraped around the lander antenna.

The Russians were very good at clockwork. You wouldn't believe what one of those PVUs looked like! Think, miniaturized Babbage difference engine.

The main spacecraft had a real computer on it, but not the lander or aerostat.
Go to the top of the page
 
+Quote Post
Bob Shaw
post May 7 2006, 06:14 PM
Post #75


Senior Member
****

Group: Members
Posts: 2488
Joined: 17-April 05
From: Glasgow, Scotland, UK
Member No.: 239



QUOTE (DonPMitchell @ May 7 2006, 07:10 PM) *
The Russians were very good at clockwork. You wouldn't believe what one of those PVUs looked like! Think, miniaturized Babbage difference engine.

The main spacecraft had a real computer on it, but not the lander or aerostat.


Couldn't get the parts, eh - no wonder Madame de Pompadour was so popular!

(don't ask)

Bob Shaw


--------------------
Remember: Time Flies like the wind - but Fruit Flies like bananas!
Go to the top of the page
 
+Quote Post

14 Pages V  « < 3 4 5 6 7 > » 
Reply to this topicStart new topic

 



RSS Lo-Fi Version Time is now: 4th April 2020 - 02:18 AM
RULES AND GUIDELINES
Please read the Forum Rules and Guidelines before posting.

IMAGE COPYRIGHT
Images posted on UnmannedSpaceflight.com may be copyrighted. Do not reproduce without permission. Read here for further information on space images and copyright.

OPINIONS AND MODERATION
Opinions expressed on UnmannedSpaceflight.com are those of the individual posters and do not necessarily reflect the opinions of UnmannedSpaceflight.com or The Planetary Society. The all-volunteer UnmannedSpaceflight.com moderation team is wholly independent of The Planetary Society. The Planetary Society has no influence over decisions made by the UnmannedSpaceflight.com moderators.
SUPPORT THE FORUM
Unmannedspaceflight.com is a project of the Planetary Society and is funded by donations from visitors and members. Help keep this forum up and running by contributing here.