IPB

Welcome Guest ( Log In | Register )

 
Reply to this topicStart new topic
Martian meteorites far younger than previously thought
Mongo
post Jul 25 2013, 01:04 PM
Post #1


Member
***

Group: Members
Posts: 723
Joined: 13-June 04
Member No.: 82



'International Beam Team' Solves Martian Meteorite-Age Puzzle

By directing energy beams at tiny crystals found in a Martian meteorite, a Western University-led team of geologists has proved that the most common group of meteorites from Mars is almost 4 billion years younger than many scientists had believed -- resolving a long-standing puzzle in Martian science and painting a much clearer picture of the Red Planet's evolution that can now be compared to that of habitable Earth.

In a paper published today in the journal Nature, lead author Desmond Moser, an Earth Sciences professor from Western's Faculty of Science, Kim Tait, Curator, Mineralogy, Royal Ontario Museum, and a team of Canadian, U.S., and British collaborators show that a representative meteorite from the Royal Ontario Museum (ROM)'s growing Martian meteorite collection, started as a 200 million-year-old lava flow on Mars, and contains an ancient chemical signature indicating a hidden layer deep beneath the surface that is almost as old as the solar system.

The team, composed of scientists from ROM, the University of Wyoming, UCLA, and the University of Portsmouth, also discovered crystals that grew while the meteorite was launched from Mars towards Earth, allowing them to narrow down the timing to less than 20 million years ago while also identifying possible launch locations on the flanks of the supervolcanoes at the Martian equator.

Solving the Martian meteorite age conundrum using micro-baddeleyite and launch-generated zircon

Invaluable records of planetary dynamics and evolution can be recovered from the geochemical systematics of single meteorites. However, the interpreted ages of the ejected igneous crust of Mars differ by up to four billion years, a conundrum due in part to the difficulty of using geochemistry alone to distinguish between the ages of formation and the ages of the impact events that launched debris towards Earth. Here we solve the conundrum by combining in situ electron-beam nanostructural analyses and U–Pb (uranium–lead) isotopic measurements of the resistant micromineral baddeleyite (ZrO2) and host igneous minerals in the highly shock-metamorphosed shergottite Northwest Africa 5298, which is a basaltic Martian meteorite. We establish that the micro-baddeleyite grains pre-date the launch event because they are shocked, cogenetic with host igneous minerals, and preserve primary igneous growth zoning. The grains least affected by shock disturbance, and which are rich in radiogenic Pb, date the basalt crystallization near the Martian surface to 187 ± 33 million years before present. Primitive, non-radiogenic Pb isotope compositions of the host minerals, common to most shergottites, do not help us to date the meteorite, instead indicating a magma source region that was fractionated more than four billion years ago to form a persistent reservoir so far unique to Mars. Local impact melting during ejection from Mars less than 22 ± 2 million years ago caused the growth of unshocked, launch-generated zircon and the partial disturbance of baddeleyite dates. We can thus confirm the presence of ancient, non-convecting mantle beneath young volcanic Mars, place an upper bound on the interplanetary travel time of the ejected Martian crust, and validate a new approach to the geochronology of the inner Solar System.
Go to the top of the page
 
+Quote Post

Reply to this topicStart new topic

 



RSS Lo-Fi Version Time is now: 19th April 2024 - 04:41 AM
RULES AND GUIDELINES
Please read the Forum Rules and Guidelines before posting.

IMAGE COPYRIGHT
Images posted on UnmannedSpaceflight.com may be copyrighted. Do not reproduce without permission. Read here for further information on space images and copyright.

OPINIONS AND MODERATION
Opinions expressed on UnmannedSpaceflight.com are those of the individual posters and do not necessarily reflect the opinions of UnmannedSpaceflight.com or The Planetary Society. The all-volunteer UnmannedSpaceflight.com moderation team is wholly independent of The Planetary Society. The Planetary Society has no influence over decisions made by the UnmannedSpaceflight.com moderators.
SUPPORT THE FORUM
Unmannedspaceflight.com is funded by the Planetary Society. Please consider supporting our work and many other projects by donating to the Society or becoming a member.