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Abstract

Images taken by Junocam during Earth flyby show features suggesting the presence of
structured ghost images. Assuming ghosts being weighted distortions of a known image,
and assuming linear contributions of each ghost for a fixed pixel position, together with a
non-singularity condition, the weights can be determined by means of linear algebra, and
by related algebraic methods. 1
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1 Introduction

Images taken by Juno’s Education and Outreach camera Junocam during the Earth flyby
(EFB) in October 2013 are providing a first publicly available set of in-flight tests, similar
to the images expected to be taken during Juno’s Jupiter mission starting in mid-2016.
So this article may be put in the context of [1, subsection 6.4], goal 3: ”Provide data to
the amateur image processing community and encourage them to produce a variety of
products”.

The images show features suggesting the presence of structured ghost images. This is
in addition to the laboratory analysis of the stray light, where ”there was little evidence
of structure in the leakage” ([1, subsection 4.8]). Those ghost images may be a result of
optical and/or electronic effects of the camera. They appear to be related to real world
objects. Assuming a deterministic distortion of the real-world pinhole image for each type
of ghost, the resulting actual transmitted images should be a combination of the ghosts
and the primary image.

Junocam is CCD based. CCDs count photons. It’s therefore plausible, that ghosts
formed by reflected light contribute to the photon count in a linear way. The assumed
ghosts are blurred and distorted images of a pinhole image, weighted differently for each
pixel position. The weight is assumed to be constant over all images for a fixed pixel
position. The actual weights are unknown. With the above assumptions the weights can
be determined by means of linear algebra.

Raw Junocam images are composed of framelets of width 1648 pixels and height 128
pixels. Each of these framelets can be assigned to a color channel. There are four possible
color channels, red, green, blue and CH4.

To avoid motion blur due to the rotation of the Juno probe, Junocam supports a
technique called Time Delay Integration (TDI). Very short shutter times don’t require
this mechanism. That’s equivalent to TDI 1. For TDI 1, color channel and pixel position
within a framelet determine uniquely the pixel position on the CCD chip. For simplicity,
this article is restricted to TDI 1 mode.

Images are provided square root encoded. Linear data are obtained by squaring the
raw color values.

Section 1 describes an approach to determine the weights for a single pixel of the
ghosts. Section 2 generalizes this approach to framelets.

2 Determining the Weights of the Ghosts for a Pixel

Let N denote the set of the natural numbers, and R the field of the real numbers.

For each framelet j assume n ∈ N distorted and weighted images i being added to the
resulting raw image. Consider n framelets of the same color channel. For a fixed pixel
position on the CCD chip, and 1 ≤ i, j ≤ n, let xj,i ∈ R be the known brightness of the
distorted image i in framelet j. Let ai ∈ R be the weight for distorted image i at the fixed
pixel position, independent of the framelet. Let vj ∈ R be the linearized raw brightness
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of the fixed pixel in framelet j. Then for each framelet j, the linearized raw brightness of
the fixed pixel is

vj = xj,1 · a1 + · · ·+ xj,n · an ,

or more formally

vj =
n∑

i=1

xj,i · ai .

This sum can be written as a scalar product of two vectors:

vj = (xj,1, . . . xj,n) ·


a1
...

an

 .

Consider all n framelets at once to get
v1
...

vn

 =


x1,1 · · · x1,n

...
...

xn,1 · · · xn,n

 ·


a1
...

an

 .

For the matrix

X :=


x1,1 · · · x1,n

...
...

xn,1 · · · xn,n


assumed to be regular, its inverse can be multiplied from the left to determine the weights
ai: 

a1
...

an

 =


x1,1 · · · x1,n

...
...

xn,1 · · · xn,n


−1

·


v1
...

vn

 . (1)

3 Generalization to Framelets

3.1 Set of Framelets with Commutative Ring Structure

Describe a framelet f of width w ∈ N and height h ∈ N as a vector f = (f1, . . . , fw·h),
with fk ∈ R.

Definition 1 The sum e + f of two framelets e = (e1, . . . , ew·h) and f = (f1, . . . , fw·h),
both of width w and height h, is defined by

e + f := (e1 + f1, . . . , ew·h + fw·h).

Definition 2 The additive inverse −f of a framelet f = (f1, . . . , fw·h) of width w and
height h, is defined by

−f := (−f1, . . . ,−fw·h).
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Definition 3 The product e ·f of two framelets e = (e1, . . . , ew·h) and f = (f1, . . . , fw·h),
both of width w and height h, is defined by

e · f := (e1 · f1, . . . , ew·h · fw·h).

Proposition 4 The set of framelets of width w and height h, together with sum and
product form a ring with 0 := (0, . . . , 0), and 1 := (1, . . . , 1).

Additive neutral element: By definitrion of 0 and f, 0 + f = (0, . . . , 0) + (f1, . . . , fw·h). By
defintion of the sum, that’s equal to (0 +f1, . . . , 0 +fw·h). By the definition of the neutral
element in the field R, that’s (f1, . . . , fw·h) = f . Hence 0 + f = f .

Similar component-wise verifications show f + 0 = f , (d + e) + f = d + (e + f),
f + (−f) = 0, and e + f = f + e. Hence the set of framelets of width w and height h,
together with the sum and 0 form an abelian group, by definition.

The set of framelets of width w and height h, together with the product and 1 form a
commutative monoid, since 1 ·f = f = f ·1 (neutral element), e ·f = f · e (comutativity),
d · (e · f) = (d · e) · f (associativity), again by component-wise verification.

The distributive law d · (e + f) = d · e + d · f is easily verified the same way.
All axioms of a commutative ring are verified. 4
(For the definition of ”ring” see e.g. [2, subsection 2.1].)

Remark 5 The set of framelets of width w and height h, together with sum and product
do neither form a field nor a division ring with 0 := (0, . . . , 0), and 1 := (1, . . . , 1), in
general.

Counterexample: The non-zero framelet (0, 1) of width 2 and height 1 has no multiplica-
tive inverse. 4

3.2 Determining the Weights of the Ghosts for a Framelet

According to [2, subsection 2.3] the concept of invertible matrices can be generalized to
matrices over a commutative ring.

Hence equation (1) can be applied to framelets instead of just single pixel positions.
A pixel-wise definition, however, covers more cases, since a single pixel singularity

induces a singularity for the whole framlet.
To weaken the strict non-singularity condition for framelets, undefined pixel weights

may be replaced by default values. Two types of undefined values may be considered,
0/0, and z/0 with z 6= 0. This way equation (1) can be used for framelet matrices with
singularities.
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