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In this letter, we point out the possibility of a unified description of the roles of dark matter and
dark energy within the framework a recently proposed relativistic MOND theory. In addition to
the known successes of this model in explaining the rotation curves of galaxies, we suggest that
the homogeneous part of the dynamical scalar field could play the role of dark energy. A viable
cosmological model is proposed and its dynamics is studied.
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Current astronomical observations on cosmological
scales (CMB anisotropy [, 4, 3], supernovae 4, 13, ]
and SDSS[7]) reveal that our universe is spatially flat,
with about two thirds of the energy content resulting
from what is referred to as dark energy. This energy
has a negative pressure to account for the accelerated
expansion of the universe. While, on smaller, galactic
scales, the rotational curves of galaxies strongly indicate
that the biggest contributions to their mass density arises
from non-luminous matter, which has given rise to spec-
ulations on the existence of dark matter|[d].

On the other hand, it is also interesting to inquire if
we can solve the current observational puzzles, both dark
matter and dark energy, by modifying Einstein gravity in
spite of its many successes, in particular, the solar sys-
tem tests. MOND theory is a striking modification of
the Newtonian laws of motion and explains the rotational
curves with amazing accuracy[d] without introducing any
dark matter. After some initial problems a consistent
relativistic extension of the MOND theory has recently
been proposed by Bekenstein[1(]. In that extension, gen-
eral relativity has been modified by including two scalar
fields (one dynamical while the other is non-dynamical),
one vector field and a conformal coupling of the scalar
field to the metric tensor (hence the acronym TeVeS as-
sociated with it). In addition, the theory contains one
arbitrary function whose form is dictated in part by its
primary purpose, i.e., to address the data on the rota-
tional curves of galaxies, or equivalently, the dark matter
problem. The remarkable features of this theory are that
it can explain the galaxy rotational curves without in-
troducing dark matter (just as its non-relativistic coun-
terpart, MOND theory) and at the same time reduce to
general relativity in the appropriate limits. The price one
pays is the additional complication of the whole system:
two scalar fields, one vector field, gravitational field and
the conformal coupling.

A natural question to ask is if the new framework also
works for cosmology? Can it help tackling the dark en-
ergy problem? We will show in this paper that under
appropriate conditions, the scalar field could mimic the

behavior of the dark energy models|L1], [12, [13, 14, [15]
currently in vogue. Thus, the TeVeS theory has the po-
tential, to naturally solve the cosmic puzzles currently
explained by dark energy and dark matter without in-
voking either of them explicitly.

We begin with a brief outline of cosmology in the
TeVeS framework. Following Bekenstein[L(], the action
for the whole system could be written as
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are the actions for gravity, scalar field, vector field and
luminous matter respectively. In the above, j.s =
e 2%(gap + Uallg) — 2?8481 5 is the metric tensor in real
world and g,,, is the Einstein metric tensor. i, is a time-
like 4-vector field, ¢ and o are respectively the dynamical
the non-dynamical scalar fields, F is a free function to be
specified by dynamics while k¥ and K are two positive
dimensionless parameters. Varying the action, one can
arrive at the following equations of motion for the vec-
tor, scalar and gravitational fields [10]:
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T, is the energy momentum tensor of ordinary matter
in the physical coordinate system. h®? = g®# — 4P
and p = kGo?.

In a cosmological setting, the symmetries of the FRW
universe will simplify the above equations considerably.
It is worth recalling here an underlying assumption in
such applications. One interprets the fields in the prob-
lem, say the scalar field, as consisting of both a spatially
homogenous (time dependent) part and an inhomogenous
one. On cosmological scales the spatially inhomogenous
part may be neglected in the first approximation while at
galactic scales, the inhomogenous part plays a prominent
role and the homogenous part is negligible (quasi-static
approximation). Henceforth, we will restrict ourselves to
cosmological scales, more specifically to the flat universe
case, and consider the line element:

d3? = —d* + a(f)?dx? (12)

where df = e®dt and @ = e%a. The vector field in this
case could be chosen as U* = 4} and the scalar field
depends only on time t. Thus, the Einstein equations

become

(—) SRLEIPN (13)
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where py = pe 2%, py = pe2? are respectively the
density and pressure of luminous matter in Einstein’s
picture. p, and py are the effective energy density and
pressure of the scalar field ¢, defined as:
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where p relates to ¢ via the o equation (Eq[D):

pF (1) + %MQFI(N) = 2% (16)
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The equation of motion of the scalar field ¢ in a FRW
background is given by

. . kG
pe+ (BHp + f1)¢ + 7(pM+3pM) =0 (17)

where H = a/a and dot denotes the derivative with re-
spect to t. It is worth nothing that Eq.([T) is consistent
with the condition (b ~ 0 because the matter density
pum decreases to zero at late times. Therefore, the ”slow
roll” approximation for the scalar field ¢ is consistent
only at late times. If we assume that ¢ varies slowly and
e72¢ ~ 1, then we can consider the two energy compo-
nents to be approximately adiabatic, and energy momen-
tum conservation leads to
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where the subscript ¢ denotes M and ¢. To get a closed
system of equations, we also need to specify the equa-
tion of state of the energy/matter content. This equa-
tion of state is specified by w = p/p, which is 0 for
non-relativistic matter. While for the scalar field, this
equation of state is given by its equation of motion,
i.e.,Eq.([@) which can be expressed as,

o = MChpd® — P F ()
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In the ”slow roll” regime, gb ~ gb ~ 0 and wg ~ —1.
It is worth noting that from Eq.[[d), the equation of
state could approach —1 from either greater than -1
(quintessence case) or less than -1(phantom case) if we
choose the form of F(u) appropriately. In this paper,
we focus on the case with wy, > —1. Eqs.(CI4) are
expressed in terms of the scale factor in the Einstein pic-
ture. In terms of the physical picture scale factor we have
the relation:
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It is obvious that in the ”slow roll” regime, the acceler-
ated or deccelerated expansion of Universe is equivalently
reflected by @ with e=2? ~ 1. We will now discuss a vi-
able cosmological model.

From the above discussion, it is clear now that we will
get the evolution of the whole dynamical system if the
form of F'(u) is specified. However, at present there are
no theoretical arguments in favor of any specific choice,
thereby providing a lot of freedom in this regard. The
constraints on the form of F'(u) are phenomenological
in nature motivated by the condition that the correct

physics is obtained. In this section, we will consider the
the choice of the form of F(u) that will lead to an ac-
ceptable cosmology in addition to accommodating the
MOND theory and Newton’s Law.

From Eq.([[d), the positive energy condition, ps > 0
and the non-vanishing of py as b — 0 may restrict the
freedom in the choice of the form of F'(u). Simplicity
motivates the choice u?F(u) = const + p(u) with p(u) a
function of p. The constant term will guarantee a non-
vanishing energy density as ¢ — 0. Thus, we specify the
form of F'(u) as
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(21)
where « is a dimensionless constant. When « = 0, the
above reduces to the form in|1(]. Then, from Eq.([d), we

can obtain the relation between p and ¢ as
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For a consistent cosmology, we require 2 <y < co. Note
also that ¢ = 0 when p = 2, for which the energy density
Eq.([3) becomes pg = ym3zg and the equation of state
reduces to, wy = —1 at late times, which corresponds to
a de Sitter phase. This not only provides an acceptable
cosmological state but also ensures the consistency of our
previous assumption ¢ ~ 0. Next, we show that such a
phase corresponds to a dynamical de Sitter attractor|16].
To do this, we introduce the dimensionless variables x =
¢, z =1tg¢p and N = Ina with ¢y a constant of dimension
t. We can rewrite the Eqs.([[3HF) in terms of z, z and
N and linearize them around the critical point (z,z) =
(z,0), then, we arrive at the following system of equations

de 2 (23)
dN tox/27Ta/3k2f2

4z = -3z

dN

It is easy to see that the eigenvalues of the coefficients
matrix of Eq.Z3) are (—3,0) which indicates that the
critical point is stable, i.e. a dynamical attractor. One
comes to the same conclusion by noting that ¢ = 0 leads
to a minimum of the energy density pgs. In Figs. (1)
and ( 2 ), we plot the numerical results for the dynam-
ical system defined above. Note that our intention here
is merely to illustrate the possibility of a consistent cos-
mology and not to fit the exact observational data. So,
for convenience, we have set the parameter a = 0.01 and
the rest to unity. Since the attractor corresponds to all ¢
with ¢ = 0, we can choose ¢ ~ 0 so that e=2% ~ 1, which
is indicated by the previous discussion. In our numerical
analyses, we chose ¢ = 0.00001 and the initial ¢ from
0.001 to 0.005 with an increment of 0.001.
Summarizing, in this paper, we have studied the cos-
mological implications of the relativistic MOND theory
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FIG. 1: The evolution of cosmic parameters for matter(indigo
curve) and ¢ field (pink curve).

FIG. 2: The evolution of the equation of state of ¢ field for
different initial ¢.

and interpreted the dynamical scalar field as dark energy.
We constructed a viable cosmological model, in which the
dynamical system has a late time de Sitter behavior.

On the other hand, the framework of the relativistic
MOND theory involves an arbitrary function in addition
to many parameters as well as auxiliary fields. This not
only provides much freedom in matching the theory to
observations, but also adds uncertainties. Clearly, they
must be constrained from further phenomenological in-
vestigations of the testable predications of the theory. It
would be interesting to see if the model can be made
compatible with all the astronomical data with a unique
choice for the arbitrary function. Are there any theoret-
ical constraints on this function?

The analysis in this paper is an initial attempt in this
direction. The choice of the function F (), though with-
out any deep theoretical basis, phenomenologically ex-
plains both dark matter and dark energy in the same
framework. It remains to be checked in future how this
form of the function F(y) can be embedded in the larger
context of an appropriate function that explains all the
data.
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